Step |
Hyp |
Ref |
Expression |
1 |
|
sbcbr123 |
|- ( [. A / x ]. z F y <-> [_ A / x ]_ z [_ A / x ]_ F [_ A / x ]_ y ) |
2 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ z = z ) |
3 |
|
csbconstg |
|- ( A e. V -> [_ A / x ]_ y = y ) |
4 |
2 3
|
breq12d |
|- ( A e. V -> ( [_ A / x ]_ z [_ A / x ]_ F [_ A / x ]_ y <-> z [_ A / x ]_ F y ) ) |
5 |
1 4
|
syl5bb |
|- ( A e. V -> ( [. A / x ]. z F y <-> z [_ A / x ]_ F y ) ) |
6 |
5
|
opabbidv |
|- ( A e. V -> { <. y , z >. | [. A / x ]. z F y } = { <. y , z >. | z [_ A / x ]_ F y } ) |
7 |
|
csbopabgALT |
|- ( A e. V -> [_ A / x ]_ { <. y , z >. | z F y } = { <. y , z >. | [. A / x ]. z F y } ) |
8 |
|
df-cnv |
|- `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y } |
9 |
8
|
a1i |
|- ( A e. V -> `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y } ) |
10 |
6 7 9
|
3eqtr4rd |
|- ( A e. V -> `' [_ A / x ]_ F = [_ A / x ]_ { <. y , z >. | z F y } ) |
11 |
|
df-cnv |
|- `' F = { <. y , z >. | z F y } |
12 |
11
|
csbeq2i |
|- [_ A / x ]_ `' F = [_ A / x ]_ { <. y , z >. | z F y } |
13 |
10 12
|
eqtr4di |
|- ( A e. V -> `' [_ A / x ]_ F = [_ A / x ]_ `' F ) |