Metamath Proof Explorer


Theorem csbcnvgALT

Description: Move class substitution in and out of the converse of a relation. Version of csbcnv with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion csbcnvgALT
|- ( A e. V -> `' [_ A / x ]_ F = [_ A / x ]_ `' F )

Proof

Step Hyp Ref Expression
1 sbcbr123
 |-  ( [. A / x ]. z F y <-> [_ A / x ]_ z [_ A / x ]_ F [_ A / x ]_ y )
2 csbconstg
 |-  ( A e. V -> [_ A / x ]_ z = z )
3 csbconstg
 |-  ( A e. V -> [_ A / x ]_ y = y )
4 2 3 breq12d
 |-  ( A e. V -> ( [_ A / x ]_ z [_ A / x ]_ F [_ A / x ]_ y <-> z [_ A / x ]_ F y ) )
5 1 4 syl5bb
 |-  ( A e. V -> ( [. A / x ]. z F y <-> z [_ A / x ]_ F y ) )
6 5 opabbidv
 |-  ( A e. V -> { <. y , z >. | [. A / x ]. z F y } = { <. y , z >. | z [_ A / x ]_ F y } )
7 csbopabgALT
 |-  ( A e. V -> [_ A / x ]_ { <. y , z >. | z F y } = { <. y , z >. | [. A / x ]. z F y } )
8 df-cnv
 |-  `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y }
9 8 a1i
 |-  ( A e. V -> `' [_ A / x ]_ F = { <. y , z >. | z [_ A / x ]_ F y } )
10 6 7 9 3eqtr4rd
 |-  ( A e. V -> `' [_ A / x ]_ F = [_ A / x ]_ { <. y , z >. | z F y } )
11 df-cnv
 |-  `' F = { <. y , z >. | z F y }
12 11 csbeq2i
 |-  [_ A / x ]_ `' F = [_ A / x ]_ { <. y , z >. | z F y }
13 10 12 eqtr4di
 |-  ( A e. V -> `' [_ A / x ]_ F = [_ A / x ]_ `' F )