Metamath Proof Explorer


Theorem csbco3g

Description: Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypothesis sbcco3g.1
|- ( x = A -> B = C )
Assertion csbco3g
|- ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ C / y ]_ D )

Proof

Step Hyp Ref Expression
1 sbcco3g.1
 |-  ( x = A -> B = C )
2 csbnestg
 |-  ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ [_ A / x ]_ B / y ]_ D )
3 elex
 |-  ( A e. V -> A e. _V )
4 nfcvd
 |-  ( A e. _V -> F/_ x C )
5 4 1 csbiegf
 |-  ( A e. _V -> [_ A / x ]_ B = C )
6 3 5 syl
 |-  ( A e. V -> [_ A / x ]_ B = C )
7 6 csbeq1d
 |-  ( A e. V -> [_ [_ A / x ]_ B / y ]_ D = [_ C / y ]_ D )
8 2 7 eqtrd
 |-  ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ C / y ]_ D )