Description: Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbcco3g.1 | |- ( x = A -> B = C ) | |
| Assertion | csbco3g | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ C / y ]_ D ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcco3g.1 | |- ( x = A -> B = C ) | |
| 2 | csbnestg | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ [_ A / x ]_ B / y ]_ D ) | |
| 3 | elex | |- ( A e. V -> A e. _V ) | |
| 4 | nfcvd | |- ( A e. _V -> F/_ x C ) | |
| 5 | 4 1 | csbiegf | |- ( A e. _V -> [_ A / x ]_ B = C ) | 
| 6 | 3 5 | syl | |- ( A e. V -> [_ A / x ]_ B = C ) | 
| 7 | 6 | csbeq1d | |- ( A e. V -> [_ [_ A / x ]_ B / y ]_ D = [_ C / y ]_ D ) | 
| 8 | 2 7 | eqtrd | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ D = [_ C / y ]_ D ) |