| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ ( B o. C ) = [_ A / x ]_ ( B o. C ) ) | 
						
							| 2 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) | 
						
							| 3 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) | 
						
							| 4 | 2 3 | coeq12d |  |-  ( y = A -> ( [_ y / x ]_ B o. [_ y / x ]_ C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) | 
						
							| 5 | 1 4 | eqeq12d |  |-  ( y = A -> ( [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) <-> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) ) | 
						
							| 6 |  | vex |  |-  y e. _V | 
						
							| 7 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 8 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 9 | 7 8 | nfco |  |-  F/_ x ( [_ y / x ]_ B o. [_ y / x ]_ C ) | 
						
							| 10 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 11 |  | csbeq1a |  |-  ( x = y -> C = [_ y / x ]_ C ) | 
						
							| 12 | 10 11 | coeq12d |  |-  ( x = y -> ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) ) | 
						
							| 13 | 6 9 12 | csbief |  |-  [_ y / x ]_ ( B o. C ) = ( [_ y / x ]_ B o. [_ y / x ]_ C ) | 
						
							| 14 | 5 13 | vtoclg |  |-  ( A e. V -> [_ A / x ]_ ( B o. C ) = ( [_ A / x ]_ B o. [_ A / x ]_ C ) ) |