Metamath Proof Explorer


Theorem csbconstgi

Description: The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypothesis csbconstgi.1
|- A e. _V
Assertion csbconstgi
|- [_ A / x ]_ y = y

Proof

Step Hyp Ref Expression
1 csbconstgi.1
 |-  A e. _V
2 csbconstg
 |-  ( A e. _V -> [_ A / x ]_ y = y )
3 1 2 ax-mp
 |-  [_ A / x ]_ y = y