Metamath Proof Explorer


Theorem csbcow

Description: Composition law for chained substitutions into a class. Version of csbco with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Assertion csbcow
|- [_ A / y ]_ [_ y / x ]_ B = [_ A / x ]_ B

Proof

Step Hyp Ref Expression
1 df-csb
 |-  [_ y / x ]_ B = { z | [. y / x ]. z e. B }
2 1 abeq2i
 |-  ( z e. [_ y / x ]_ B <-> [. y / x ]. z e. B )
3 2 sbcbii
 |-  ( [. A / y ]. z e. [_ y / x ]_ B <-> [. A / y ]. [. y / x ]. z e. B )
4 sbccow
 |-  ( [. A / y ]. [. y / x ]. z e. B <-> [. A / x ]. z e. B )
5 3 4 bitri
 |-  ( [. A / y ]. z e. [_ y / x ]_ B <-> [. A / x ]. z e. B )
6 5 abbii
 |-  { z | [. A / y ]. z e. [_ y / x ]_ B } = { z | [. A / x ]. z e. B }
7 df-csb
 |-  [_ A / y ]_ [_ y / x ]_ B = { z | [. A / y ]. z e. [_ y / x ]_ B }
8 df-csb
 |-  [_ A / x ]_ B = { z | [. A / x ]. z e. B }
9 6 7 8 3eqtr4i
 |-  [_ A / y ]_ [_ y / x ]_ B = [_ A / x ]_ B