Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbeq12dv.1 | |- ( ph -> A = C ) |
|
csbeq12dv.2 | |- ( ph -> B = D ) |
||
Assertion | csbeq12dv | |- ( ph -> [_ A / x ]_ B = [_ C / x ]_ D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq12dv.1 | |- ( ph -> A = C ) |
|
2 | csbeq12dv.2 | |- ( ph -> B = D ) |
|
3 | 1 | csbeq1d | |- ( ph -> [_ A / x ]_ B = [_ C / x ]_ B ) |
4 | 2 | csbeq2dv | |- ( ph -> [_ C / x ]_ B = [_ C / x ]_ D ) |
5 | 3 4 | eqtrd | |- ( ph -> [_ A / x ]_ B = [_ C / x ]_ D ) |