Metamath Proof Explorer


Theorem csbeq12dv

Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023)

Ref Expression
Hypotheses csbeq12dv.1
|- ( ph -> A = C )
csbeq12dv.2
|- ( ph -> B = D )
Assertion csbeq12dv
|- ( ph -> [_ A / x ]_ B = [_ C / x ]_ D )

Proof

Step Hyp Ref Expression
1 csbeq12dv.1
 |-  ( ph -> A = C )
2 csbeq12dv.2
 |-  ( ph -> B = D )
3 1 csbeq1d
 |-  ( ph -> [_ A / x ]_ B = [_ C / x ]_ B )
4 2 csbeq2dv
 |-  ( ph -> [_ C / x ]_ B = [_ C / x ]_ D )
5 3 4 eqtrd
 |-  ( ph -> [_ A / x ]_ B = [_ C / x ]_ D )