Description: Equality theorem for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbeq1a | |- ( x = A -> B = [_ A / x ]_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbid | |- [_ x / x ]_ B = B |
|
2 | csbeq1 | |- ( x = A -> [_ x / x ]_ B = [_ A / x ]_ B ) |
|
3 | 1 2 | eqtr3id | |- ( x = A -> B = [_ A / x ]_ B ) |