Metamath Proof Explorer


Theorem csbeq2d

Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses csbeq2d.1
|- F/ x ph
csbeq2d.2
|- ( ph -> B = C )
Assertion csbeq2d
|- ( ph -> [_ A / x ]_ B = [_ A / x ]_ C )

Proof

Step Hyp Ref Expression
1 csbeq2d.1
 |-  F/ x ph
2 csbeq2d.2
 |-  ( ph -> B = C )
3 2 eleq2d
 |-  ( ph -> ( y e. B <-> y e. C ) )
4 1 3 sbcbid
 |-  ( ph -> ( [. A / x ]. y e. B <-> [. A / x ]. y e. C ) )
5 4 abbidv
 |-  ( ph -> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } )
6 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
7 df-csb
 |-  [_ A / x ]_ C = { y | [. A / x ]. y e. C }
8 5 6 7 3eqtr4g
 |-  ( ph -> [_ A / x ]_ B = [_ A / x ]_ C )