Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbeq2d.1 | |- F/ x ph |
|
csbeq2d.2 | |- ( ph -> B = C ) |
||
Assertion | csbeq2d | |- ( ph -> [_ A / x ]_ B = [_ A / x ]_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbeq2d.1 | |- F/ x ph |
|
2 | csbeq2d.2 | |- ( ph -> B = C ) |
|
3 | 2 | eleq2d | |- ( ph -> ( y e. B <-> y e. C ) ) |
4 | 1 3 | sbcbid | |- ( ph -> ( [. A / x ]. y e. B <-> [. A / x ]. y e. C ) ) |
5 | 4 | abbidv | |- ( ph -> { y | [. A / x ]. y e. B } = { y | [. A / x ]. y e. C } ) |
6 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
7 | df-csb | |- [_ A / x ]_ C = { y | [. A / x ]. y e. C } |
|
8 | 5 6 7 | 3eqtr4g | |- ( ph -> [_ A / x ]_ B = [_ A / x ]_ C ) |