Metamath Proof Explorer


Theorem csbfv

Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbfv
|- [_ A / x ]_ ( F ` x ) = ( F ` A )

Proof

Step Hyp Ref Expression
1 csbfv2g
 |-  ( A e. _V -> [_ A / x ]_ ( F ` x ) = ( F ` [_ A / x ]_ x ) )
2 csbvarg
 |-  ( A e. _V -> [_ A / x ]_ x = A )
3 2 fveq2d
 |-  ( A e. _V -> ( F ` [_ A / x ]_ x ) = ( F ` A ) )
4 1 3 eqtrd
 |-  ( A e. _V -> [_ A / x ]_ ( F ` x ) = ( F ` A ) )
5 csbprc
 |-  ( -. A e. _V -> [_ A / x ]_ ( F ` x ) = (/) )
6 fvprc
 |-  ( -. A e. _V -> ( F ` A ) = (/) )
7 5 6 eqtr4d
 |-  ( -. A e. _V -> [_ A / x ]_ ( F ` x ) = ( F ` A ) )
8 4 7 pm2.61i
 |-  [_ A / x ]_ ( F ` x ) = ( F ` A )