Step |
Hyp |
Ref |
Expression |
1 |
|
csbiota |
|- [_ A / x ]_ ( iota y B F y ) = ( iota y [. A / x ]. B F y ) |
2 |
|
sbcbr123 |
|- ( [. A / x ]. B F y <-> [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ y ) |
3 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ y = y ) |
4 |
3
|
breq2d |
|- ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ y <-> [_ A / x ]_ B [_ A / x ]_ F y ) ) |
5 |
2 4
|
syl5bb |
|- ( A e. _V -> ( [. A / x ]. B F y <-> [_ A / x ]_ B [_ A / x ]_ F y ) ) |
6 |
5
|
iotabidv |
|- ( A e. _V -> ( iota y [. A / x ]. B F y ) = ( iota y [_ A / x ]_ B [_ A / x ]_ F y ) ) |
7 |
1 6
|
eqtrid |
|- ( A e. _V -> [_ A / x ]_ ( iota y B F y ) = ( iota y [_ A / x ]_ B [_ A / x ]_ F y ) ) |
8 |
|
df-fv |
|- ( F ` B ) = ( iota y B F y ) |
9 |
8
|
csbeq2i |
|- [_ A / x ]_ ( F ` B ) = [_ A / x ]_ ( iota y B F y ) |
10 |
|
df-fv |
|- ( [_ A / x ]_ F ` [_ A / x ]_ B ) = ( iota y [_ A / x ]_ B [_ A / x ]_ F y ) |
11 |
7 9 10
|
3eqtr4g |
|- ( A e. _V -> [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ) |
12 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ ( F ` B ) = (/) ) |
13 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ F = (/) ) |
14 |
13
|
fveq1d |
|- ( -. A e. _V -> ( [_ A / x ]_ F ` [_ A / x ]_ B ) = ( (/) ` [_ A / x ]_ B ) ) |
15 |
|
0fv |
|- ( (/) ` [_ A / x ]_ B ) = (/) |
16 |
14 15
|
eqtr2di |
|- ( -. A e. _V -> (/) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ) |
17 |
12 16
|
eqtrd |
|- ( -. A e. _V -> [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ) |
18 |
11 17
|
pm2.61i |
|- [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) |