Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. A e. C ->. A e. C ). |
2 |
|
sbceqg |
|- ( A e. C -> ( [. A / x ]. ( F " { B } ) = { y } <-> [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } ) ) |
3 |
1 2
|
e1a |
|- (. A e. C ->. ( [. A / x ]. ( F " { B } ) = { y } <-> [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } ) ). |
4 |
|
csbima12 |
|- [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) |
5 |
4
|
a1i |
|- ( A e. C -> [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) ) |
6 |
1 5
|
e1a |
|- (. A e. C ->. [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) ). |
7 |
|
csbsng |
|- ( A e. C -> [_ A / x ]_ { B } = { [_ A / x ]_ B } ) |
8 |
1 7
|
e1a |
|- (. A e. C ->. [_ A / x ]_ { B } = { [_ A / x ]_ B } ). |
9 |
|
imaeq2 |
|- ( [_ A / x ]_ { B } = { [_ A / x ]_ B } -> ( [_ A / x ]_ F " [_ A / x ]_ { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ) |
10 |
8 9
|
e1a |
|- (. A e. C ->. ( [_ A / x ]_ F " [_ A / x ]_ { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ). |
11 |
|
eqeq1 |
|- ( [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) -> ( [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) <-> ( [_ A / x ]_ F " [_ A / x ]_ { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ) ) |
12 |
11
|
biimprd |
|- ( [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " [_ A / x ]_ { B } ) -> ( ( [_ A / x ]_ F " [_ A / x ]_ { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) -> [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ) ) |
13 |
6 10 12
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) ). |
14 |
|
csbconstg |
|- ( A e. C -> [_ A / x ]_ { y } = { y } ) |
15 |
1 14
|
e1a |
|- (. A e. C ->. [_ A / x ]_ { y } = { y } ). |
16 |
|
eqeq12 |
|- ( ( [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) /\ [_ A / x ]_ { y } = { y } ) -> ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ) |
17 |
16
|
ex |
|- ( [_ A / x ]_ ( F " { B } ) = ( [_ A / x ]_ F " { [_ A / x ]_ B } ) -> ( [_ A / x ]_ { y } = { y } -> ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ) ) |
18 |
13 15 17
|
e11 |
|- (. A e. C ->. ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ). |
19 |
|
bibi1 |
|- ( ( [. A / x ]. ( F " { B } ) = { y } <-> [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } ) -> ( ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) <-> ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ) ) |
20 |
19
|
biimprd |
|- ( ( [. A / x ]. ( F " { B } ) = { y } <-> [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } ) -> ( ( [_ A / x ]_ ( F " { B } ) = [_ A / x ]_ { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) -> ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ) ) |
21 |
3 18 20
|
e11 |
|- (. A e. C ->. ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ). |
22 |
21
|
gen11 |
|- (. A e. C ->. A. y ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) ). |
23 |
|
abbi |
|- ( A. y ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) <-> { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) |
24 |
23
|
biimpi |
|- ( A. y ( [. A / x ]. ( F " { B } ) = { y } <-> ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } ) -> { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) |
25 |
22 24
|
e1a |
|- (. A e. C ->. { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ). |
26 |
|
csbab |
|- [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } |
27 |
26
|
a1i |
|- ( A e. C -> [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } ) |
28 |
1 27
|
e1a |
|- (. A e. C ->. [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } ). |
29 |
|
eqeq2 |
|- ( { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } <-> [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
30 |
29
|
biimpd |
|- ( { y | [. A / x ]. ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | [. A / x ]. ( F " { B } ) = { y } } -> [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
31 |
25 28 30
|
e11 |
|- (. A e. C ->. [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ). |
32 |
|
unieq |
|- ( [_ A / x ]_ { y | ( F " { B } ) = { y } } = { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> U. [_ A / x ]_ { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) |
33 |
31 32
|
e1a |
|- (. A e. C ->. U. [_ A / x ]_ { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ). |
34 |
|
csbuni |
|- [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } |
35 |
34
|
a1i |
|- ( A e. C -> [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } ) |
36 |
1 35
|
e1a |
|- (. A e. C ->. [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } ). |
37 |
|
eqeq2 |
|- ( U. [_ A / x ]_ { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } <-> [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
38 |
37
|
biimpd |
|- ( U. [_ A / x ]_ { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. [_ A / x ]_ { y | ( F " { B } ) = { y } } -> [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
39 |
33 36 38
|
e11 |
|- (. A e. C ->. [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ). |
40 |
|
dffv4 |
|- ( F ` B ) = U. { y | ( F " { B } ) = { y } } |
41 |
40
|
ax-gen |
|- A. x ( F ` B ) = U. { y | ( F " { B } ) = { y } } |
42 |
|
csbeq2 |
|- ( A. x ( F ` B ) = U. { y | ( F " { B } ) = { y } } -> [_ A / x ]_ ( F ` B ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } ) |
43 |
42
|
a1i |
|- ( A e. C -> ( A. x ( F ` B ) = U. { y | ( F " { B } ) = { y } } -> [_ A / x ]_ ( F ` B ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } ) ) |
44 |
1 41 43
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F ` B ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } ). |
45 |
|
eqeq2 |
|- ( [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ ( F ` B ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } <-> [_ A / x ]_ ( F ` B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
46 |
45
|
biimpd |
|- ( [_ A / x ]_ U. { y | ( F " { B } ) = { y } } = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ ( F ` B ) = [_ A / x ]_ U. { y | ( F " { B } ) = { y } } -> [_ A / x ]_ ( F ` B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
47 |
39 44 46
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ( F ` B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ). |
48 |
|
dffv4 |
|- ( [_ A / x ]_ F ` [_ A / x ]_ B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } |
49 |
|
eqeq2 |
|- ( ( [_ A / x ]_ F ` [_ A / x ]_ B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) <-> [_ A / x ]_ ( F ` B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } ) ) |
50 |
49
|
biimprcd |
|- ( [_ A / x ]_ ( F ` B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> ( ( [_ A / x ]_ F ` [_ A / x ]_ B ) = U. { y | ( [_ A / x ]_ F " { [_ A / x ]_ B } ) = { y } } -> [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ) ) |
51 |
47 48 50
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ). |
52 |
51
|
in1 |
|- ( A e. C -> [_ A / x ]_ ( F ` B ) = ( [_ A / x ]_ F ` [_ A / x ]_ B ) ) |