Metamath Proof Explorer


Theorem csbgfi

Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbgfi.1
|- A e. _V
csbgfi.2
|- F/_ x B
Assertion csbgfi
|- [_ A / x ]_ B = B

Proof

Step Hyp Ref Expression
1 csbgfi.1
 |-  A e. _V
2 csbgfi.2
 |-  F/_ x B
3 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
4 3 abeq2i
 |-  ( y e. [_ A / x ]_ B <-> [. A / x ]. y e. B )
5 2 nfcri
 |-  F/ x y e. B
6 1 5 sbcgfi
 |-  ( [. A / x ]. y e. B <-> y e. B )
7 4 6 bitri
 |-  ( y e. [_ A / x ]_ B <-> y e. B )
8 7 eqriv
 |-  [_ A / x ]_ B = B