Step |
Hyp |
Ref |
Expression |
1 |
|
csbhypf.1 |
|- F/_ x A |
2 |
|
csbhypf.2 |
|- F/_ x C |
3 |
|
csbhypf.3 |
|- ( x = A -> B = C ) |
4 |
1
|
nfeq2 |
|- F/ x y = A |
5 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
6 |
5 2
|
nfeq |
|- F/ x [_ y / x ]_ B = C |
7 |
4 6
|
nfim |
|- F/ x ( y = A -> [_ y / x ]_ B = C ) |
8 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
9 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
10 |
9
|
eqeq1d |
|- ( x = y -> ( B = C <-> [_ y / x ]_ B = C ) ) |
11 |
8 10
|
imbi12d |
|- ( x = y -> ( ( x = A -> B = C ) <-> ( y = A -> [_ y / x ]_ B = C ) ) ) |
12 |
7 11 3
|
chvarfv |
|- ( y = A -> [_ y / x ]_ B = C ) |