Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbid | |- [_ x / x ]_ A = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-csb | |- [_ x / x ]_ A = { y | [. x / x ]. y e. A } |
|
| 2 | sbcid | |- ( [. x / x ]. y e. A <-> y e. A ) |
|
| 3 | 2 | abbii | |- { y | [. x / x ]. y e. A } = { y | y e. A } |
| 4 | abid2 | |- { y | y e. A } = A |
|
| 5 | 1 3 4 | 3eqtri | |- [_ x / x ]_ A = A |