Step |
Hyp |
Ref |
Expression |
1 |
|
csbnest1g |
|- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ [_ A / x ]_ A / x ]_ B ) |
2 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ A = A ) |
3 |
2
|
csbeq1d |
|- ( A e. _V -> [_ [_ A / x ]_ A / x ]_ B = [_ A / x ]_ B ) |
4 |
1 3
|
eqtrd |
|- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
5 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = (/) ) |
6 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
7 |
5 6
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
8 |
4 7
|
pm2.61i |
|- [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B |