| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbnest1g |
|- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ [_ A / x ]_ A / x ]_ B ) |
| 2 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ A = A ) |
| 3 |
2
|
csbeq1d |
|- ( A e. _V -> [_ [_ A / x ]_ A / x ]_ B = [_ A / x ]_ B ) |
| 4 |
1 3
|
eqtrd |
|- ( A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
| 5 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = (/) ) |
| 6 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
| 7 |
5 6
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B ) |
| 8 |
4 7
|
pm2.61i |
|- [_ A / x ]_ [_ A / x ]_ B = [_ A / x ]_ B |