Metamath Proof Explorer


Theorem csbie

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbie.1
|- A e. _V
csbie.2
|- ( x = A -> B = C )
Assertion csbie
|- [_ A / x ]_ B = C

Proof

Step Hyp Ref Expression
1 csbie.1
 |-  A e. _V
2 csbie.2
 |-  ( x = A -> B = C )
3 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
4 2 eleq2d
 |-  ( x = A -> ( y e. B <-> y e. C ) )
5 1 4 sbcie
 |-  ( [. A / x ]. y e. B <-> y e. C )
6 5 abbii
 |-  { y | [. A / x ]. y e. B } = { y | y e. C }
7 abid2
 |-  { y | y e. C } = C
8 3 6 7 3eqtri
 |-  [_ A / x ]_ B = C