Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbie.1 | |- A e. _V |
|
csbie.2 | |- ( x = A -> B = C ) |
||
Assertion | csbie | |- [_ A / x ]_ B = C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie.1 | |- A e. _V |
|
2 | csbie.2 | |- ( x = A -> B = C ) |
|
3 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
4 | 2 | eleq2d | |- ( x = A -> ( y e. B <-> y e. C ) ) |
5 | 1 4 | sbcie | |- ( [. A / x ]. y e. B <-> y e. C ) |
6 | 5 | abbii | |- { y | [. A / x ]. y e. B } = { y | y e. C } |
7 | abid2 | |- { y | y e. C } = C |
|
8 | 3 6 7 | 3eqtri | |- [_ A / x ]_ B = C |