Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by GG, 15-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbie.1 | |- A e. _V  | 
					|
| csbie.2 | |- ( x = A -> B = C )  | 
					||
| Assertion | csbie | |- [_ A / x ]_ B = C  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | csbie.1 | |- A e. _V  | 
						|
| 2 | csbie.2 | |- ( x = A -> B = C )  | 
						|
| 3 | df-csb |  |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B } | 
						|
| 4 | 2 | eleq2d | |- ( x = A -> ( y e. B <-> y e. C ) )  | 
						
| 5 | 1 4 | sbcie | |- ( [. A / x ]. y e. B <-> y e. C )  | 
						
| 6 | 5 | abbii |  |-  { y | [. A / x ]. y e. B } = { y | y e. C } | 
						
| 7 | abid2 |  |-  { y | y e. C } = C | 
						|
| 8 | 3 6 7 | 3eqtri | |- [_ A / x ]_ B = C  |