Metamath Proof Explorer


Theorem csbie2

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007)

Ref Expression
Hypotheses csbie2t.1
|- A e. _V
csbie2t.2
|- B e. _V
csbie2.3
|- ( ( x = A /\ y = B ) -> C = D )
Assertion csbie2
|- [_ A / x ]_ [_ B / y ]_ C = D

Proof

Step Hyp Ref Expression
1 csbie2t.1
 |-  A e. _V
2 csbie2t.2
 |-  B e. _V
3 csbie2.3
 |-  ( ( x = A /\ y = B ) -> C = D )
4 3 gen2
 |-  A. x A. y ( ( x = A /\ y = B ) -> C = D )
5 1 2 csbie2t
 |-  ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> [_ A / x ]_ [_ B / y ]_ C = D )
6 4 5 ax-mp
 |-  [_ A / x ]_ [_ B / y ]_ C = D