Description: Conversion of implicit substitution to explicit class substitution. This version of csbie avoids a disjointness condition on x , A and x , D by substituting twice. (Contributed by Mario Carneiro, 11-Nov-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbie2g.1 | |- ( x = y -> B = C ) |
|
csbie2g.2 | |- ( y = A -> C = D ) |
||
Assertion | csbie2g | |- ( A e. V -> [_ A / x ]_ B = D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie2g.1 | |- ( x = y -> B = C ) |
|
2 | csbie2g.2 | |- ( y = A -> C = D ) |
|
3 | df-csb | |- [_ A / x ]_ B = { z | [. A / x ]. z e. B } |
|
4 | 1 | eleq2d | |- ( x = y -> ( z e. B <-> z e. C ) ) |
5 | 2 | eleq2d | |- ( y = A -> ( z e. C <-> z e. D ) ) |
6 | 4 5 | sbcie2g | |- ( A e. V -> ( [. A / x ]. z e. B <-> z e. D ) ) |
7 | 6 | abbi1dv | |- ( A e. V -> { z | [. A / x ]. z e. B } = D ) |
8 | 3 7 | eqtrid | |- ( A e. V -> [_ A / x ]_ B = D ) |