Step |
Hyp |
Ref |
Expression |
1 |
|
csbie2t.1 |
|- A e. _V |
2 |
|
csbie2t.2 |
|- B e. _V |
3 |
|
nfa1 |
|- F/ x A. x A. y ( ( x = A /\ y = B ) -> C = D ) |
4 |
|
nfcvd |
|- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> F/_ x D ) |
5 |
1
|
a1i |
|- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> A e. _V ) |
6 |
|
nfa2 |
|- F/ y A. x A. y ( ( x = A /\ y = B ) -> C = D ) |
7 |
|
nfv |
|- F/ y x = A |
8 |
6 7
|
nfan |
|- F/ y ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) |
9 |
|
nfcvd |
|- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> F/_ y D ) |
10 |
2
|
a1i |
|- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> B e. _V ) |
11 |
|
2sp |
|- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> ( ( x = A /\ y = B ) -> C = D ) ) |
12 |
11
|
impl |
|- ( ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) /\ y = B ) -> C = D ) |
13 |
8 9 10 12
|
csbiedf |
|- ( ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) /\ x = A ) -> [_ B / y ]_ C = D ) |
14 |
3 4 5 13
|
csbiedf |
|- ( A. x A. y ( ( x = A /\ y = B ) -> C = D ) -> [_ A / x ]_ [_ B / y ]_ C = D ) |