Description: Bidirectional conversion between an implicit class substitution hypothesis x = A -> B = C and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbieb.1 | |- A e. _V |
|
| csbieb.2 | |- F/_ x C |
||
| Assertion | csbieb | |- ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbieb.1 | |- A e. _V |
|
| 2 | csbieb.2 | |- F/_ x C |
|
| 3 | csbiebt | |- ( ( A e. _V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) |