Step |
Hyp |
Ref |
Expression |
1 |
|
csbiebg.2 |
|- F/_ x C |
2 |
|
eqeq2 |
|- ( a = A -> ( x = a <-> x = A ) ) |
3 |
2
|
imbi1d |
|- ( a = A -> ( ( x = a -> B = C ) <-> ( x = A -> B = C ) ) ) |
4 |
3
|
albidv |
|- ( a = A -> ( A. x ( x = a -> B = C ) <-> A. x ( x = A -> B = C ) ) ) |
5 |
|
csbeq1 |
|- ( a = A -> [_ a / x ]_ B = [_ A / x ]_ B ) |
6 |
5
|
eqeq1d |
|- ( a = A -> ( [_ a / x ]_ B = C <-> [_ A / x ]_ B = C ) ) |
7 |
|
vex |
|- a e. _V |
8 |
7 1
|
csbieb |
|- ( A. x ( x = a -> B = C ) <-> [_ a / x ]_ B = C ) |
9 |
4 6 8
|
vtoclbg |
|- ( A e. V -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |