| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbiebg.2 |
|- F/_ x C |
| 2 |
|
eqeq2 |
|- ( a = A -> ( x = a <-> x = A ) ) |
| 3 |
2
|
imbi1d |
|- ( a = A -> ( ( x = a -> B = C ) <-> ( x = A -> B = C ) ) ) |
| 4 |
3
|
albidv |
|- ( a = A -> ( A. x ( x = a -> B = C ) <-> A. x ( x = A -> B = C ) ) ) |
| 5 |
|
csbeq1 |
|- ( a = A -> [_ a / x ]_ B = [_ A / x ]_ B ) |
| 6 |
5
|
eqeq1d |
|- ( a = A -> ( [_ a / x ]_ B = C <-> [_ A / x ]_ B = C ) ) |
| 7 |
|
vex |
|- a e. _V |
| 8 |
7 1
|
csbieb |
|- ( A. x ( x = a -> B = C ) <-> [_ a / x ]_ B = C ) |
| 9 |
4 6 8
|
vtoclbg |
|- ( A e. V -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |