| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 2 |
|
spsbc |
|- ( A e. _V -> ( A. x ( x = A -> B = C ) -> [. A / x ]. ( x = A -> B = C ) ) ) |
| 3 |
2
|
adantr |
|- ( ( A e. _V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) -> [. A / x ]. ( x = A -> B = C ) ) ) |
| 4 |
|
simpl |
|- ( ( A e. _V /\ F/_ x C ) -> A e. _V ) |
| 5 |
|
biimt |
|- ( x = A -> ( B = C <-> ( x = A -> B = C ) ) ) |
| 6 |
|
csbeq1a |
|- ( x = A -> B = [_ A / x ]_ B ) |
| 7 |
6
|
eqeq1d |
|- ( x = A -> ( B = C <-> [_ A / x ]_ B = C ) ) |
| 8 |
5 7
|
bitr3d |
|- ( x = A -> ( ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
| 9 |
8
|
adantl |
|- ( ( ( A e. _V /\ F/_ x C ) /\ x = A ) -> ( ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
| 10 |
|
nfv |
|- F/ x A e. _V |
| 11 |
|
nfnfc1 |
|- F/ x F/_ x C |
| 12 |
10 11
|
nfan |
|- F/ x ( A e. _V /\ F/_ x C ) |
| 13 |
|
nfcsb1v |
|- F/_ x [_ A / x ]_ B |
| 14 |
13
|
a1i |
|- ( ( A e. _V /\ F/_ x C ) -> F/_ x [_ A / x ]_ B ) |
| 15 |
|
simpr |
|- ( ( A e. _V /\ F/_ x C ) -> F/_ x C ) |
| 16 |
14 15
|
nfeqd |
|- ( ( A e. _V /\ F/_ x C ) -> F/ x [_ A / x ]_ B = C ) |
| 17 |
4 9 12 16
|
sbciedf |
|- ( ( A e. _V /\ F/_ x C ) -> ( [. A / x ]. ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
| 18 |
3 17
|
sylibd |
|- ( ( A e. _V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) -> [_ A / x ]_ B = C ) ) |
| 19 |
13
|
a1i |
|- ( F/_ x C -> F/_ x [_ A / x ]_ B ) |
| 20 |
|
id |
|- ( F/_ x C -> F/_ x C ) |
| 21 |
19 20
|
nfeqd |
|- ( F/_ x C -> F/ x [_ A / x ]_ B = C ) |
| 22 |
11 21
|
nfan1 |
|- F/ x ( F/_ x C /\ [_ A / x ]_ B = C ) |
| 23 |
7
|
biimprcd |
|- ( [_ A / x ]_ B = C -> ( x = A -> B = C ) ) |
| 24 |
23
|
adantl |
|- ( ( F/_ x C /\ [_ A / x ]_ B = C ) -> ( x = A -> B = C ) ) |
| 25 |
22 24
|
alrimi |
|- ( ( F/_ x C /\ [_ A / x ]_ B = C ) -> A. x ( x = A -> B = C ) ) |
| 26 |
25
|
ex |
|- ( F/_ x C -> ( [_ A / x ]_ B = C -> A. x ( x = A -> B = C ) ) ) |
| 27 |
26
|
adantl |
|- ( ( A e. _V /\ F/_ x C ) -> ( [_ A / x ]_ B = C -> A. x ( x = A -> B = C ) ) ) |
| 28 |
18 27
|
impbid |
|- ( ( A e. _V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
| 29 |
1 28
|
sylan |
|- ( ( A e. V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |