Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbied2.1 | |- ( ph -> A e. V ) |
|
csbied2.2 | |- ( ph -> A = B ) |
||
csbied2.3 | |- ( ( ph /\ x = B ) -> C = D ) |
||
Assertion | csbied2 | |- ( ph -> [_ A / x ]_ C = D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbied2.1 | |- ( ph -> A e. V ) |
|
2 | csbied2.2 | |- ( ph -> A = B ) |
|
3 | csbied2.3 | |- ( ( ph /\ x = B ) -> C = D ) |
|
4 | id | |- ( x = A -> x = A ) |
|
5 | 4 2 | sylan9eqr | |- ( ( ph /\ x = A ) -> x = B ) |
6 | 5 3 | syldan | |- ( ( ph /\ x = A ) -> C = D ) |
7 | 1 6 | csbied | |- ( ph -> [_ A / x ]_ C = D ) |