Metamath Proof Explorer


Theorem csbiedf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiedf.1
|- F/ x ph
csbiedf.2
|- ( ph -> F/_ x C )
csbiedf.3
|- ( ph -> A e. V )
csbiedf.4
|- ( ( ph /\ x = A ) -> B = C )
Assertion csbiedf
|- ( ph -> [_ A / x ]_ B = C )

Proof

Step Hyp Ref Expression
1 csbiedf.1
 |-  F/ x ph
2 csbiedf.2
 |-  ( ph -> F/_ x C )
3 csbiedf.3
 |-  ( ph -> A e. V )
4 csbiedf.4
 |-  ( ( ph /\ x = A ) -> B = C )
5 4 ex
 |-  ( ph -> ( x = A -> B = C ) )
6 1 5 alrimi
 |-  ( ph -> A. x ( x = A -> B = C ) )
7 csbiebt
 |-  ( ( A e. V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) )
8 3 2 7 syl2anc
 |-  ( ph -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) )
9 6 8 mpbid
 |-  ( ph -> [_ A / x ]_ B = C )