Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbiedf.1 | |- F/ x ph |
|
csbiedf.2 | |- ( ph -> F/_ x C ) |
||
csbiedf.3 | |- ( ph -> A e. V ) |
||
csbiedf.4 | |- ( ( ph /\ x = A ) -> B = C ) |
||
Assertion | csbiedf | |- ( ph -> [_ A / x ]_ B = C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbiedf.1 | |- F/ x ph |
|
2 | csbiedf.2 | |- ( ph -> F/_ x C ) |
|
3 | csbiedf.3 | |- ( ph -> A e. V ) |
|
4 | csbiedf.4 | |- ( ( ph /\ x = A ) -> B = C ) |
|
5 | 4 | ex | |- ( ph -> ( x = A -> B = C ) ) |
6 | 1 5 | alrimi | |- ( ph -> A. x ( x = A -> B = C ) ) |
7 | csbiebt | |- ( ( A e. V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
|
8 | 3 2 7 | syl2anc | |- ( ph -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
9 | 6 8 | mpbid | |- ( ph -> [_ A / x ]_ B = C ) |