Metamath Proof Explorer


Theorem csbiegf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiegf.1
|- ( A e. V -> F/_ x C )
csbiegf.2
|- ( x = A -> B = C )
Assertion csbiegf
|- ( A e. V -> [_ A / x ]_ B = C )

Proof

Step Hyp Ref Expression
1 csbiegf.1
 |-  ( A e. V -> F/_ x C )
2 csbiegf.2
 |-  ( x = A -> B = C )
3 2 ax-gen
 |-  A. x ( x = A -> B = C )
4 csbiebt
 |-  ( ( A e. V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) )
5 1 4 mpdan
 |-  ( A e. V -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) )
6 3 5 mpbii
 |-  ( A e. V -> [_ A / x ]_ B = C )