Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 11-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csbiegf.1 | |- ( A e. V -> F/_ x C ) |
|
| csbiegf.2 | |- ( x = A -> B = C ) |
||
| Assertion | csbiegf | |- ( A e. V -> [_ A / x ]_ B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbiegf.1 | |- ( A e. V -> F/_ x C ) |
|
| 2 | csbiegf.2 | |- ( x = A -> B = C ) |
|
| 3 | 2 | ax-gen | |- A. x ( x = A -> B = C ) |
| 4 | csbiebt | |- ( ( A e. V /\ F/_ x C ) -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
|
| 5 | 1 4 | mpdan | |- ( A e. V -> ( A. x ( x = A -> B = C ) <-> [_ A / x ]_ B = C ) ) |
| 6 | 3 5 | mpbii | |- ( A e. V -> [_ A / x ]_ B = C ) |