| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ if ( ph , B , C ) = [_ A / x ]_ if ( ph , B , C ) ) | 
						
							| 2 |  | dfsbcq2 |  |-  ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) | 
						
							| 3 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) | 
						
							| 4 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) | 
						
							| 5 | 2 3 4 | ifbieq12d |  |-  ( y = A -> if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) | 
						
							| 6 | 1 5 | eqeq12d |  |-  ( y = A -> ( [_ y / x ]_ if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) <-> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) ) | 
						
							| 7 |  | vex |  |-  y e. _V | 
						
							| 8 |  | nfs1v |  |-  F/ x [ y / x ] ph | 
						
							| 9 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 10 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 11 | 8 9 10 | nfif |  |-  F/_ x if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) | 
						
							| 12 |  | sbequ12 |  |-  ( x = y -> ( ph <-> [ y / x ] ph ) ) | 
						
							| 13 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 14 |  | csbeq1a |  |-  ( x = y -> C = [_ y / x ]_ C ) | 
						
							| 15 | 12 13 14 | ifbieq12d |  |-  ( x = y -> if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) ) | 
						
							| 16 | 7 11 15 | csbief |  |-  [_ y / x ]_ if ( ph , B , C ) = if ( [ y / x ] ph , [_ y / x ]_ B , [_ y / x ]_ C ) | 
						
							| 17 | 6 16 | vtoclg |  |-  ( A e. _V -> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) | 
						
							| 18 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ if ( ph , B , C ) = (/) ) | 
						
							| 19 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ B = (/) ) | 
						
							| 20 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ C = (/) ) | 
						
							| 21 | 19 20 | ifeq12d |  |-  ( -. A e. _V -> if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) = if ( [. A / x ]. ph , (/) , (/) ) ) | 
						
							| 22 |  | ifid |  |-  if ( [. A / x ]. ph , (/) , (/) ) = (/) | 
						
							| 23 | 21 22 | eqtr2di |  |-  ( -. A e. _V -> (/) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) | 
						
							| 24 | 18 23 | eqtrd |  |-  ( -. A e. _V -> [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) ) | 
						
							| 25 | 17 24 | pm2.61i |  |-  [_ A / x ]_ if ( ph , B , C ) = if ( [. A / x ]. ph , [_ A / x ]_ B , [_ A / x ]_ C ) |