| Step | Hyp | Ref | Expression | 
						
							| 1 |  | idn1 |  |-  (. A e. C ->. A e. C ). | 
						
							| 2 |  | csbres |  |-  [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) | 
						
							| 3 | 2 | a1i |  |-  ( A e. C -> [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) | 
						
							| 4 | 1 3 | e1a |  |-  (. A e. C ->. [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). | 
						
							| 5 |  | rneq |  |-  ( [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) | 
						
							| 6 | 4 5 | e1a |  |-  (. A e. C ->. ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). | 
						
							| 7 |  | csbrn |  |-  [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) | 
						
							| 8 | 7 | a1i |  |-  ( A e. C -> [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ) | 
						
							| 9 | 1 8 | e1a |  |-  (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ). | 
						
							| 10 |  | eqeq2 |  |-  ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) <-> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) | 
						
							| 11 | 10 | biimpd |  |-  ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) -> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) | 
						
							| 12 | 6 9 11 | e11 |  |-  (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). | 
						
							| 13 |  | df-ima |  |-  ( F " B ) = ran ( F |` B ) | 
						
							| 14 | 13 | ax-gen |  |-  A. x ( F " B ) = ran ( F |` B ) | 
						
							| 15 |  | csbeq2 |  |-  ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) | 
						
							| 16 | 15 | a1i |  |-  ( A e. C -> ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) ) | 
						
							| 17 | 1 14 16 | e10 |  |-  (. A e. C ->. [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ). | 
						
							| 18 |  | eqeq2 |  |-  ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) | 
						
							| 19 | 18 | biimpd |  |-  ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) | 
						
							| 20 | 12 17 19 | e11 |  |-  (. A e. C ->. [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). | 
						
							| 21 |  | df-ima |  |-  ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) | 
						
							| 22 |  | eqeq2 |  |-  ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) | 
						
							| 23 | 22 | biimprcd |  |-  ( [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) ) | 
						
							| 24 | 20 21 23 | e10 |  |-  (. A e. C ->. [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ). | 
						
							| 25 | 24 | in1 |  |-  ( A e. C -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) |