Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
|- (. A e. C ->. A e. C ). |
2 |
|
csbres |
|- [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) |
3 |
2
|
a1i |
|- ( A e. C -> [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) |
4 |
1 3
|
e1a |
|- (. A e. C ->. [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
5 |
|
rneq |
|- ( [_ A / x ]_ ( F |` B ) = ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) |
6 |
4 5
|
e1a |
|- (. A e. C ->. ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
7 |
|
csbrn |
|- [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) |
8 |
7
|
a1i |
|- ( A e. C -> [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ) |
9 |
1 8
|
e1a |
|- (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) ). |
10 |
|
eqeq2 |
|- ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) <-> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
11 |
10
|
biimpd |
|- ( ran [_ A / x ]_ ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ran ( F |` B ) = ran [_ A / x ]_ ( F |` B ) -> [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
12 |
6 9 11
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
13 |
|
df-ima |
|- ( F " B ) = ran ( F |` B ) |
14 |
13
|
ax-gen |
|- A. x ( F " B ) = ran ( F |` B ) |
15 |
|
csbeq2 |
|- ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) |
16 |
15
|
a1i |
|- ( A e. C -> ( A. x ( F " B ) = ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ) ) |
17 |
1 14 16
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) ). |
18 |
|
eqeq2 |
|- ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
19 |
18
|
biimpd |
|- ( [_ A / x ]_ ran ( F |` B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = [_ A / x ]_ ran ( F |` B ) -> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
20 |
12 17 19
|
e11 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ). |
21 |
|
df-ima |
|- ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) |
22 |
|
eqeq2 |
|- ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) <-> [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) ) ) |
23 |
22
|
biimprcd |
|- ( [_ A / x ]_ ( F " B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> ( ( [_ A / x ]_ F " [_ A / x ]_ B ) = ran ( [_ A / x ]_ F |` [_ A / x ]_ B ) -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) ) |
24 |
20 21 23
|
e10 |
|- (. A e. C ->. [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ). |
25 |
24
|
in1 |
|- ( A e. C -> [_ A / x ]_ ( F " B ) = ( [_ A / x ]_ F " [_ A / x ]_ B ) ) |