Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( z = A -> [_ z / x ]_ ( iota y ph ) = [_ A / x ]_ ( iota y ph ) ) |
2 |
|
dfsbcq2 |
|- ( z = A -> ( [ z / x ] ph <-> [. A / x ]. ph ) ) |
3 |
2
|
iotabidv |
|- ( z = A -> ( iota y [ z / x ] ph ) = ( iota y [. A / x ]. ph ) ) |
4 |
1 3
|
eqeq12d |
|- ( z = A -> ( [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) <-> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) ) |
5 |
|
vex |
|- z e. _V |
6 |
|
nfs1v |
|- F/ x [ z / x ] ph |
7 |
6
|
nfiotaw |
|- F/_ x ( iota y [ z / x ] ph ) |
8 |
|
sbequ12 |
|- ( x = z -> ( ph <-> [ z / x ] ph ) ) |
9 |
8
|
iotabidv |
|- ( x = z -> ( iota y ph ) = ( iota y [ z / x ] ph ) ) |
10 |
5 7 9
|
csbief |
|- [_ z / x ]_ ( iota y ph ) = ( iota y [ z / x ] ph ) |
11 |
4 10
|
vtoclg |
|- ( A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) |
12 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = (/) ) |
13 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
14 |
13
|
con3i |
|- ( -. A e. _V -> -. [. A / x ]. ph ) |
15 |
14
|
nexdv |
|- ( -. A e. _V -> -. E. y [. A / x ]. ph ) |
16 |
|
euex |
|- ( E! y [. A / x ]. ph -> E. y [. A / x ]. ph ) |
17 |
16
|
con3i |
|- ( -. E. y [. A / x ]. ph -> -. E! y [. A / x ]. ph ) |
18 |
|
iotanul |
|- ( -. E! y [. A / x ]. ph -> ( iota y [. A / x ]. ph ) = (/) ) |
19 |
15 17 18
|
3syl |
|- ( -. A e. _V -> ( iota y [. A / x ]. ph ) = (/) ) |
20 |
12 19
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) ) |
21 |
11 20
|
pm2.61i |
|- [_ A / x ]_ ( iota y ph ) = ( iota y [. A / x ]. ph ) |