Metamath Proof Explorer


Theorem csbmpt2

Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019)

Ref Expression
Assertion csbmpt2
|- ( A e. V -> [_ A / x ]_ ( y e. Y |-> Z ) = ( y e. Y |-> [_ A / x ]_ Z ) )

Proof

Step Hyp Ref Expression
1 csbmpt12
 |-  ( A e. V -> [_ A / x ]_ ( y e. Y |-> Z ) = ( y e. [_ A / x ]_ Y |-> [_ A / x ]_ Z ) )
2 csbconstg
 |-  ( A e. V -> [_ A / x ]_ Y = Y )
3 2 mpteq1d
 |-  ( A e. V -> ( y e. [_ A / x ]_ Y |-> [_ A / x ]_ Z ) = ( y e. Y |-> [_ A / x ]_ Z ) )
4 1 3 eqtrd
 |-  ( A e. V -> [_ A / x ]_ ( y e. Y |-> Z ) = ( y e. Y |-> [_ A / x ]_ Z ) )