Step |
Hyp |
Ref |
Expression |
1 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
2 |
1
|
ax-gen |
|- A. y F/_ x [_ y / x ]_ C |
3 |
|
csbnestgfw |
|- ( ( A e. V /\ A. y F/_ x [_ y / x ]_ C ) -> [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C ) |
4 |
2 3
|
mpan2 |
|- ( A e. V -> [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C ) |
5 |
|
csbcow |
|- [_ B / y ]_ [_ y / x ]_ C = [_ B / x ]_ C |
6 |
5
|
csbeq2i |
|- [_ A / x ]_ [_ B / y ]_ [_ y / x ]_ C = [_ A / x ]_ [_ B / x ]_ C |
7 |
|
csbcow |
|- [_ [_ A / x ]_ B / y ]_ [_ y / x ]_ C = [_ [_ A / x ]_ B / x ]_ C |
8 |
4 6 7
|
3eqtr3g |
|- ( A e. V -> [_ A / x ]_ [_ B / x ]_ C = [_ [_ A / x ]_ B / x ]_ C ) |