Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbnestg | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfcv | |- F/_ x C | |
| 2 | 1 | ax-gen | |- A. y F/_ x C | 
| 3 | csbnestgf | |- ( ( A e. V /\ A. y F/_ x C ) -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) | |
| 4 | 2 3 | mpan2 | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) |