Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | csbnestg | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv | |- F/_ x C |
|
2 | 1 | ax-gen | |- A. y F/_ x C |
3 | csbnestgf | |- ( ( A e. V /\ A. y F/_ x C ) -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) |
|
4 | 2 3 | mpan2 | |- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C ) |