Metamath Proof Explorer


Theorem csbnestg

Description: Nest the composition of two substitutions. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbnestgw when possible. (Contributed by NM, 23-Nov-2005) (Proof shortened by Mario Carneiro, 10-Nov-2016) (New usage is discouraged.)

Ref Expression
Assertion csbnestg
|- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x C
2 1 ax-gen
 |-  A. y F/_ x C
3 csbnestgf
 |-  ( ( A e. V /\ A. y F/_ x C ) -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )
4 2 3 mpan2
 |-  ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )