Metamath Proof Explorer


Theorem csbnestgw

Description: Nest the composition of two substitutions. Version of csbnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgw
|- ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x C
2 1 ax-gen
 |-  A. y F/_ x C
3 csbnestgfw
 |-  ( ( A e. V /\ A. y F/_ x C ) -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )
4 2 3 mpan2
 |-  ( A e. V -> [_ A / x ]_ [_ B / y ]_ C = [_ [_ A / x ]_ B / y ]_ C )