| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbeq1 |
|- ( w = A -> [_ w / x ]_ { <. y , z >. | ph } = [_ A / x ]_ { <. y , z >. | ph } ) |
| 2 |
|
dfsbcq2 |
|- ( w = A -> ( [ w / x ] ph <-> [. A / x ]. ph ) ) |
| 3 |
2
|
opabbidv |
|- ( w = A -> { <. y , z >. | [ w / x ] ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 4 |
1 3
|
eqeq12d |
|- ( w = A -> ( [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } <-> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) ) |
| 5 |
|
vex |
|- w e. _V |
| 6 |
|
nfs1v |
|- F/ x [ w / x ] ph |
| 7 |
6
|
nfopab |
|- F/_ x { <. y , z >. | [ w / x ] ph } |
| 8 |
|
sbequ12 |
|- ( x = w -> ( ph <-> [ w / x ] ph ) ) |
| 9 |
8
|
opabbidv |
|- ( x = w -> { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } ) |
| 10 |
5 7 9
|
csbief |
|- [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } |
| 11 |
4 10
|
vtoclg |
|- ( A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 12 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = (/) ) |
| 13 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
| 14 |
13
|
con3i |
|- ( -. A e. _V -> -. [. A / x ]. ph ) |
| 15 |
14
|
nexdv |
|- ( -. A e. _V -> -. E. z [. A / x ]. ph ) |
| 16 |
15
|
nexdv |
|- ( -. A e. _V -> -. E. y E. z [. A / x ]. ph ) |
| 17 |
|
opabn0 |
|- ( { <. y , z >. | [. A / x ]. ph } =/= (/) <-> E. y E. z [. A / x ]. ph ) |
| 18 |
17
|
necon1bbii |
|- ( -. E. y E. z [. A / x ]. ph <-> { <. y , z >. | [. A / x ]. ph } = (/) ) |
| 19 |
16 18
|
sylib |
|- ( -. A e. _V -> { <. y , z >. | [. A / x ]. ph } = (/) ) |
| 20 |
12 19
|
eqtr4d |
|- ( -. A e. _V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |
| 21 |
11 20
|
pm2.61i |
|- [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } |