Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( w = A -> [_ w / x ]_ { <. y , z >. | ph } = [_ A / x ]_ { <. y , z >. | ph } ) |
2 |
|
dfsbcq2 |
|- ( w = A -> ( [ w / x ] ph <-> [. A / x ]. ph ) ) |
3 |
2
|
opabbidv |
|- ( w = A -> { <. y , z >. | [ w / x ] ph } = { <. y , z >. | [. A / x ]. ph } ) |
4 |
1 3
|
eqeq12d |
|- ( w = A -> ( [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } <-> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) ) |
5 |
|
vex |
|- w e. _V |
6 |
|
nfs1v |
|- F/ x [ w / x ] ph |
7 |
6
|
nfopab |
|- F/_ x { <. y , z >. | [ w / x ] ph } |
8 |
|
sbequ12 |
|- ( x = w -> ( ph <-> [ w / x ] ph ) ) |
9 |
8
|
opabbidv |
|- ( x = w -> { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } ) |
10 |
5 7 9
|
csbief |
|- [_ w / x ]_ { <. y , z >. | ph } = { <. y , z >. | [ w / x ] ph } |
11 |
4 10
|
vtoclg |
|- ( A e. V -> [_ A / x ]_ { <. y , z >. | ph } = { <. y , z >. | [. A / x ]. ph } ) |