| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbov123 |  |-  [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) | 
						
							| 2 |  | csbconstg |  |-  ( A e. _V -> [_ A / x ]_ B = B ) | 
						
							| 3 |  | csbconstg |  |-  ( A e. _V -> [_ A / x ]_ C = C ) | 
						
							| 4 | 2 3 | oveq12d |  |-  ( A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) ) | 
						
							| 5 |  | 0fv |  |-  ( (/) ` <. B , C >. ) = (/) | 
						
							| 6 |  | df-ov |  |-  ( B (/) C ) = ( (/) ` <. B , C >. ) | 
						
							| 7 |  | 0ov |  |-  ( [_ A / x ]_ B (/) [_ A / x ]_ C ) = (/) | 
						
							| 8 | 5 6 7 | 3eqtr4ri |  |-  ( [_ A / x ]_ B (/) [_ A / x ]_ C ) = ( B (/) C ) | 
						
							| 9 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ F = (/) ) | 
						
							| 10 | 9 | oveqd |  |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ B (/) [_ A / x ]_ C ) ) | 
						
							| 11 | 9 | oveqd |  |-  ( -. A e. _V -> ( B [_ A / x ]_ F C ) = ( B (/) C ) ) | 
						
							| 12 | 8 10 11 | 3eqtr4a |  |-  ( -. A e. _V -> ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) ) | 
						
							| 13 | 4 12 | pm2.61i |  |-  ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( B [_ A / x ]_ F C ) | 
						
							| 14 | 1 13 | eqtri |  |-  [_ A / x ]_ ( B F C ) = ( B [_ A / x ]_ F C ) |