| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ ( B F C ) = [_ A / x ]_ ( B F C ) ) | 
						
							| 2 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F ) | 
						
							| 3 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) | 
						
							| 4 |  | csbeq1 |  |-  ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) | 
						
							| 5 | 2 3 4 | oveq123d |  |-  ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) | 
						
							| 6 | 1 5 | eqeq12d |  |-  ( y = A -> ( [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) <-> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) ) | 
						
							| 7 |  | vex |  |-  y e. _V | 
						
							| 8 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 9 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ F | 
						
							| 10 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ C | 
						
							| 11 | 8 9 10 | nfov |  |-  F/_ x ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) | 
						
							| 12 |  | csbeq1a |  |-  ( x = y -> F = [_ y / x ]_ F ) | 
						
							| 13 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 14 |  | csbeq1a |  |-  ( x = y -> C = [_ y / x ]_ C ) | 
						
							| 15 | 12 13 14 | oveq123d |  |-  ( x = y -> ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) ) | 
						
							| 16 | 7 11 15 | csbief |  |-  [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) | 
						
							| 17 | 6 16 | vtoclg |  |-  ( A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) | 
						
							| 18 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ ( B F C ) = (/) ) | 
						
							| 19 |  | df-ov |  |-  ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) | 
						
							| 20 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ F = (/) ) | 
						
							| 21 | 20 | fveq1d |  |-  ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) ) | 
						
							| 22 |  | 0fv |  |-  ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) ) | 
						
							| 24 | 19 23 | eqtr2id |  |-  ( -. A e. _V -> (/) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) | 
						
							| 25 | 18 24 | eqtrd |  |-  ( -. A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) | 
						
							| 26 | 17 25 | pm2.61i |  |-  [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) |