| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ ( B F C ) = [_ A / x ]_ ( B F C ) ) |
| 2 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ F = [_ A / x ]_ F ) |
| 3 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
| 4 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
| 5 |
2 3 4
|
oveq123d |
|- ( y = A -> ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 6 |
1 5
|
eqeq12d |
|- ( y = A -> ( [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) <-> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) ) |
| 7 |
|
vex |
|- y e. _V |
| 8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 9 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ F |
| 10 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
| 11 |
8 9 10
|
nfov |
|- F/_ x ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) |
| 12 |
|
csbeq1a |
|- ( x = y -> F = [_ y / x ]_ F ) |
| 13 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 14 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
| 15 |
12 13 14
|
oveq123d |
|- ( x = y -> ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) ) |
| 16 |
7 11 15
|
csbief |
|- [_ y / x ]_ ( B F C ) = ( [_ y / x ]_ B [_ y / x ]_ F [_ y / x ]_ C ) |
| 17 |
6 16
|
vtoclg |
|- ( A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 18 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ ( B F C ) = (/) ) |
| 19 |
|
df-ov |
|- ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) = ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) |
| 20 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ F = (/) ) |
| 21 |
20
|
fveq1d |
|- ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) ) |
| 22 |
|
0fv |
|- ( (/) ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) |
| 23 |
21 22
|
eqtrdi |
|- ( -. A e. _V -> ( [_ A / x ]_ F ` <. [_ A / x ]_ B , [_ A / x ]_ C >. ) = (/) ) |
| 24 |
19 23
|
eqtr2id |
|- ( -. A e. _V -> (/) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 25 |
18 24
|
eqtrd |
|- ( -. A e. _V -> [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) ) |
| 26 |
17 25
|
pm2.61i |
|- [_ A / x ]_ ( B F C ) = ( [_ A / x ]_ B [_ A / x ]_ F [_ A / x ]_ C ) |