Metamath Proof Explorer


Theorem csbprc

Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018) (Proof shortened by JJ, 27-Aug-2021)

Ref Expression
Assertion csbprc
|- ( -. A e. _V -> [_ A / x ]_ B = (/) )

Proof

Step Hyp Ref Expression
1 sbcex
 |-  ( [. A / x ]. y e. B -> A e. _V )
2 falim
 |-  ( F. -> A e. _V )
3 1 2 pm5.21ni
 |-  ( -. A e. _V -> ( [. A / x ]. y e. B <-> F. ) )
4 3 abbidv
 |-  ( -. A e. _V -> { y | [. A / x ]. y e. B } = { y | F. } )
5 df-csb
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }
6 fal
 |-  -. F.
7 6 abf
 |-  { y | F. } = (/)
8 7 eqcomi
 |-  (/) = { y | F. }
9 4 5 8 3eqtr4g
 |-  ( -. A e. _V -> [_ A / x ]_ B = (/) )