Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018) (Proof shortened by JJ, 27-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbprc | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcex | |- ( [. A / x ]. y e. B -> A e. _V ) |
|
| 2 | falim | |- ( F. -> A e. _V ) |
|
| 3 | 1 2 | pm5.21ni | |- ( -. A e. _V -> ( [. A / x ]. y e. B <-> F. ) ) |
| 4 | 3 | abbidv | |- ( -. A e. _V -> { y | [. A / x ]. y e. B } = { y | F. } ) |
| 5 | df-csb | |- [_ A / x ]_ B = { y | [. A / x ]. y e. B } |
|
| 6 | fal | |- -. F. |
|
| 7 | 6 | abf | |- { y | F. } = (/) |
| 8 | 7 | eqcomi | |- (/) = { y | F. } |
| 9 | 4 5 8 | 3eqtr4g | |- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |