Step |
Hyp |
Ref |
Expression |
1 |
|
csbrn.1 |
|- ( ph -> A e. Fin ) |
2 |
|
csbrn.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
3 |
|
csbrn.3 |
|- ( ( ph /\ k e. A ) -> C e. RR ) |
4 |
|
2cn |
|- 2 e. CC |
5 |
2 3
|
remulcld |
|- ( ( ph /\ k e. A ) -> ( B x. C ) e. RR ) |
6 |
1 5
|
fsumrecl |
|- ( ph -> sum_ k e. A ( B x. C ) e. RR ) |
7 |
6
|
recnd |
|- ( ph -> sum_ k e. A ( B x. C ) e. CC ) |
8 |
|
sqmul |
|- ( ( 2 e. CC /\ sum_ k e. A ( B x. C ) e. CC ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
9 |
4 7 8
|
sylancr |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
10 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
11 |
10
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) |
12 |
9 11
|
eqtrdi |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
13 |
2
|
resqcld |
|- ( ( ph /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
14 |
1 13
|
fsumrecl |
|- ( ph -> sum_ k e. A ( B ^ 2 ) e. RR ) |
15 |
|
2re |
|- 2 e. RR |
16 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ k e. A ( B x. C ) e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
17 |
15 6 16
|
sylancr |
|- ( ph -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
18 |
3
|
resqcld |
|- ( ( ph /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
19 |
1 18
|
fsumrecl |
|- ( ph -> sum_ k e. A ( C ^ 2 ) e. RR ) |
20 |
1
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. Fin ) |
21 |
13
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
22 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. RR ) |
23 |
22
|
resqcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( x ^ 2 ) e. RR ) |
24 |
21 23
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. RR ) |
25 |
|
remulcl |
|- ( ( 2 e. RR /\ ( B x. C ) e. RR ) -> ( 2 x. ( B x. C ) ) e. RR ) |
26 |
15 5 25
|
sylancr |
|- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
27 |
26
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
28 |
27 22
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. RR ) |
29 |
24 28
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. RR ) |
30 |
18
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
31 |
29 30
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) e. RR ) |
32 |
2
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. RR ) |
33 |
32 22
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. RR ) |
34 |
3
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. RR ) |
35 |
33 34
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) + C ) e. RR ) |
36 |
35
|
sqge0d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( B x. x ) + C ) ^ 2 ) ) |
37 |
33
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. CC ) |
38 |
34
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. CC ) |
39 |
|
binom2 |
|- ( ( ( B x. x ) e. CC /\ C e. CC ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
40 |
37 38 39
|
syl2anc |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
41 |
32
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. CC ) |
42 |
22
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. CC ) |
43 |
41 42
|
sqmuld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) ^ 2 ) = ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
44 |
41 42 38
|
mul32d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) x. C ) = ( ( B x. C ) x. x ) ) |
45 |
44
|
oveq2d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
46 |
|
2cnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 2 e. CC ) |
47 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. RR ) |
48 |
47
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. CC ) |
49 |
46 48 42
|
mulassd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
50 |
45 49
|
eqtr4d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( ( 2 x. ( B x. C ) ) x. x ) ) |
51 |
43 50
|
oveq12d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) = ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
52 |
51
|
oveq1d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
53 |
40 52
|
eqtrd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
54 |
36 53
|
breqtrd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
55 |
20 31 54
|
fsumge0 |
|- ( ( ph /\ x e. RR ) -> 0 <_ sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
56 |
24
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. CC ) |
57 |
28
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. CC ) |
58 |
56 57
|
addcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. CC ) |
59 |
30
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. CC ) |
60 |
20 58 59
|
fsumadd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
61 |
20 56 57
|
fsumadd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
62 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
63 |
62
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
64 |
63
|
sqcld |
|- ( ( ph /\ x e. RR ) -> ( x ^ 2 ) e. CC ) |
65 |
21
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. CC ) |
66 |
20 64 65
|
fsummulc1 |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) = sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
67 |
|
2cnd |
|- ( ( ph /\ x e. RR ) -> 2 e. CC ) |
68 |
20 67 48
|
fsummulc2 |
|- ( ( ph /\ x e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) = sum_ k e. A ( 2 x. ( B x. C ) ) ) |
69 |
68
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) ) |
70 |
26
|
recnd |
|- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
71 |
70
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
72 |
20 63 71
|
fsummulc1 |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
73 |
69 72
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
74 |
66 73
|
oveq12d |
|- ( ( ph /\ x e. RR ) -> ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
75 |
61 74
|
eqtr4d |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) ) |
76 |
75
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
77 |
60 76
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
78 |
55 77
|
breqtrd |
|- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
79 |
14 17 19 78
|
discr |
|- ( ph -> ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 ) |
80 |
17
|
resqcld |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) e. RR ) |
81 |
|
4re |
|- 4 e. RR |
82 |
14 19
|
remulcld |
|- ( ph -> ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) |
83 |
|
remulcl |
|- ( ( 4 e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
84 |
81 82 83
|
sylancr |
|- ( ph -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
85 |
80 84
|
suble0d |
|- ( ph -> ( ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 <-> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
86 |
79 85
|
mpbid |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
87 |
12 86
|
eqbrtrrd |
|- ( ph -> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
88 |
6
|
resqcld |
|- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR ) |
89 |
81
|
a1i |
|- ( ph -> 4 e. RR ) |
90 |
|
4pos |
|- 0 < 4 |
91 |
90
|
a1i |
|- ( ph -> 0 < 4 ) |
92 |
|
lemul2 |
|- ( ( ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
93 |
88 82 89 91 92
|
syl112anc |
|- ( ph -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
94 |
87 93
|
mpbird |
|- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) |