| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbrn.1 |
|- ( ph -> A e. Fin ) |
| 2 |
|
csbrn.2 |
|- ( ( ph /\ k e. A ) -> B e. RR ) |
| 3 |
|
csbrn.3 |
|- ( ( ph /\ k e. A ) -> C e. RR ) |
| 4 |
|
2cn |
|- 2 e. CC |
| 5 |
2 3
|
remulcld |
|- ( ( ph /\ k e. A ) -> ( B x. C ) e. RR ) |
| 6 |
1 5
|
fsumrecl |
|- ( ph -> sum_ k e. A ( B x. C ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ph -> sum_ k e. A ( B x. C ) e. CC ) |
| 8 |
|
sqmul |
|- ( ( 2 e. CC /\ sum_ k e. A ( B x. C ) e. CC ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
| 9 |
4 7 8
|
sylancr |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
| 10 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 11 |
10
|
oveq1i |
|- ( ( 2 ^ 2 ) x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) |
| 12 |
9 11
|
eqtrdi |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) = ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) ) |
| 13 |
2
|
resqcld |
|- ( ( ph /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
| 14 |
1 13
|
fsumrecl |
|- ( ph -> sum_ k e. A ( B ^ 2 ) e. RR ) |
| 15 |
|
2re |
|- 2 e. RR |
| 16 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ k e. A ( B x. C ) e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
| 17 |
15 6 16
|
sylancr |
|- ( ph -> ( 2 x. sum_ k e. A ( B x. C ) ) e. RR ) |
| 18 |
3
|
resqcld |
|- ( ( ph /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
| 19 |
1 18
|
fsumrecl |
|- ( ph -> sum_ k e. A ( C ^ 2 ) e. RR ) |
| 20 |
1
|
adantr |
|- ( ( ph /\ x e. RR ) -> A e. Fin ) |
| 21 |
13
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. RR ) |
| 22 |
|
simplr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. RR ) |
| 23 |
22
|
resqcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( x ^ 2 ) e. RR ) |
| 24 |
21 23
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. RR ) |
| 25 |
|
remulcl |
|- ( ( 2 e. RR /\ ( B x. C ) e. RR ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 26 |
15 5 25
|
sylancr |
|- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 27 |
26
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. RR ) |
| 28 |
27 22
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. RR ) |
| 29 |
24 28
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. RR ) |
| 30 |
18
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. RR ) |
| 31 |
29 30
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) e. RR ) |
| 32 |
2
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. RR ) |
| 33 |
32 22
|
remulcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. RR ) |
| 34 |
3
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. RR ) |
| 35 |
33 34
|
readdcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) + C ) e. RR ) |
| 36 |
35
|
sqge0d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( B x. x ) + C ) ^ 2 ) ) |
| 37 |
33
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. x ) e. CC ) |
| 38 |
34
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> C e. CC ) |
| 39 |
|
binom2 |
|- ( ( ( B x. x ) e. CC /\ C e. CC ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
| 40 |
37 38 39
|
syl2anc |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) ) |
| 41 |
32
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> B e. CC ) |
| 42 |
22
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> x e. CC ) |
| 43 |
41 42
|
sqmuld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) ^ 2 ) = ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
| 44 |
41 42 38
|
mul32d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B x. x ) x. C ) = ( ( B x. C ) x. x ) ) |
| 45 |
44
|
oveq2d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
| 46 |
|
2cnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 2 e. CC ) |
| 47 |
5
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B x. C ) e. CC ) |
| 49 |
46 48 42
|
mulassd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) = ( 2 x. ( ( B x. C ) x. x ) ) ) |
| 50 |
45 49
|
eqtr4d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( ( B x. x ) x. C ) ) = ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 51 |
43 50
|
oveq12d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) = ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( ( B x. x ) ^ 2 ) + ( 2 x. ( ( B x. x ) x. C ) ) ) + ( C ^ 2 ) ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 53 |
40 52
|
eqtrd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B x. x ) + C ) ^ 2 ) = ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 54 |
36 53
|
breqtrd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> 0 <_ ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 55 |
20 31 54
|
fsumge0 |
|- ( ( ph /\ x e. RR ) -> 0 <_ sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) ) |
| 56 |
24
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( B ^ 2 ) x. ( x ^ 2 ) ) e. CC ) |
| 57 |
28
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( 2 x. ( B x. C ) ) x. x ) e. CC ) |
| 58 |
56 57
|
addcld |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) e. CC ) |
| 59 |
30
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( C ^ 2 ) e. CC ) |
| 60 |
20 58 59
|
fsumadd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 61 |
20 56 57
|
fsumadd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 62 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
| 64 |
63
|
sqcld |
|- ( ( ph /\ x e. RR ) -> ( x ^ 2 ) e. CC ) |
| 65 |
21
|
recnd |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( B ^ 2 ) e. CC ) |
| 66 |
20 64 65
|
fsummulc1 |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) = sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) ) |
| 67 |
|
2cnd |
|- ( ( ph /\ x e. RR ) -> 2 e. CC ) |
| 68 |
20 67 48
|
fsummulc2 |
|- ( ( ph /\ x e. RR ) -> ( 2 x. sum_ k e. A ( B x. C ) ) = sum_ k e. A ( 2 x. ( B x. C ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) ) |
| 70 |
26
|
recnd |
|- ( ( ph /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 71 |
70
|
adantlr |
|- ( ( ( ph /\ x e. RR ) /\ k e. A ) -> ( 2 x. ( B x. C ) ) e. CC ) |
| 72 |
20 63 71
|
fsummulc1 |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( 2 x. ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 73 |
69 72
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) = sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) |
| 74 |
66 73
|
oveq12d |
|- ( ( ph /\ x e. RR ) -> ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) = ( sum_ k e. A ( ( B ^ 2 ) x. ( x ^ 2 ) ) + sum_ k e. A ( ( 2 x. ( B x. C ) ) x. x ) ) ) |
| 75 |
61 74
|
eqtr4d |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) = ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) ) |
| 76 |
75
|
oveq1d |
|- ( ( ph /\ x e. RR ) -> ( sum_ k e. A ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 77 |
60 76
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> sum_ k e. A ( ( ( ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. ( B x. C ) ) x. x ) ) + ( C ^ 2 ) ) = ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 78 |
55 77
|
breqtrd |
|- ( ( ph /\ x e. RR ) -> 0 <_ ( ( ( sum_ k e. A ( B ^ 2 ) x. ( x ^ 2 ) ) + ( ( 2 x. sum_ k e. A ( B x. C ) ) x. x ) ) + sum_ k e. A ( C ^ 2 ) ) ) |
| 79 |
14 17 19 78
|
discr |
|- ( ph -> ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 ) |
| 80 |
17
|
resqcld |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) e. RR ) |
| 81 |
|
4re |
|- 4 e. RR |
| 82 |
14 19
|
remulcld |
|- ( ph -> ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) |
| 83 |
|
remulcl |
|- ( ( 4 e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR ) -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
| 84 |
81 82 83
|
sylancr |
|- ( ph -> ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) e. RR ) |
| 85 |
80 84
|
suble0d |
|- ( ph -> ( ( ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) - ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) <_ 0 <-> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
| 86 |
79 85
|
mpbid |
|- ( ph -> ( ( 2 x. sum_ k e. A ( B x. C ) ) ^ 2 ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
| 87 |
12 86
|
eqbrtrrd |
|- ( ph -> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) |
| 88 |
6
|
resqcld |
|- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR ) |
| 89 |
81
|
a1i |
|- ( ph -> 4 e. RR ) |
| 90 |
|
4pos |
|- 0 < 4 |
| 91 |
90
|
a1i |
|- ( ph -> 0 < 4 ) |
| 92 |
|
lemul2 |
|- ( ( ( sum_ k e. A ( B x. C ) ^ 2 ) e. RR /\ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
| 93 |
88 82 89 91 92
|
syl112anc |
|- ( ph -> ( ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) <-> ( 4 x. ( sum_ k e. A ( B x. C ) ^ 2 ) ) <_ ( 4 x. ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) ) ) |
| 94 |
87 93
|
mpbird |
|- ( ph -> ( sum_ k e. A ( B x. C ) ^ 2 ) <_ ( sum_ k e. A ( B ^ 2 ) x. sum_ k e. A ( C ^ 2 ) ) ) |