Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
|- ( B |` C ) = ( B i^i ( C X. _V ) ) |
2 |
1
|
csbeq2i |
|- [_ A / x ]_ ( B |` C ) = [_ A / x ]_ ( B i^i ( C X. _V ) ) |
3 |
|
csbxp |
|- [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. [_ A / x ]_ _V ) |
4 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ _V = _V ) |
5 |
4
|
xpeq2d |
|- ( A e. _V -> ( [_ A / x ]_ C X. [_ A / x ]_ _V ) = ( [_ A / x ]_ C X. _V ) ) |
6 |
3 5
|
eqtrid |
|- ( A e. _V -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) |
7 |
|
0xp |
|- ( (/) X. _V ) = (/) |
8 |
7
|
a1i |
|- ( -. A e. _V -> ( (/) X. _V ) = (/) ) |
9 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
10 |
9
|
xpeq1d |
|- ( -. A e. _V -> ( [_ A / x ]_ C X. _V ) = ( (/) X. _V ) ) |
11 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ ( C X. _V ) = (/) ) |
12 |
8 10 11
|
3eqtr4rd |
|- ( -. A e. _V -> [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) ) |
13 |
6 12
|
pm2.61i |
|- [_ A / x ]_ ( C X. _V ) = ( [_ A / x ]_ C X. _V ) |
14 |
13
|
ineq2i |
|- ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) |
15 |
|
csbin |
|- [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B i^i [_ A / x ]_ ( C X. _V ) ) |
16 |
|
df-res |
|- ( [_ A / x ]_ B |` [_ A / x ]_ C ) = ( [_ A / x ]_ B i^i ( [_ A / x ]_ C X. _V ) ) |
17 |
14 15 16
|
3eqtr4i |
|- [_ A / x ]_ ( B i^i ( C X. _V ) ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) |
18 |
2 17
|
eqtri |
|- [_ A / x ]_ ( B |` C ) = ( [_ A / x ]_ B |` [_ A / x ]_ C ) |