| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbima12 |  |-  [_ A / x ]_ ( B " _V ) = ( [_ A / x ]_ B " [_ A / x ]_ _V ) | 
						
							| 2 |  | csbconstg |  |-  ( A e. _V -> [_ A / x ]_ _V = _V ) | 
						
							| 3 | 2 | imaeq2d |  |-  ( A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) ) | 
						
							| 4 |  | 0ima |  |-  ( (/) " _V ) = (/) | 
						
							| 5 | 4 | eqcomi |  |-  (/) = ( (/) " _V ) | 
						
							| 6 |  | csbprc |  |-  ( -. A e. _V -> [_ A / x ]_ B = (/) ) | 
						
							| 7 | 6 | imaeq1d |  |-  ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( (/) " [_ A / x ]_ _V ) ) | 
						
							| 8 |  | 0ima |  |-  ( (/) " [_ A / x ]_ _V ) = (/) | 
						
							| 9 | 7 8 | eqtrdi |  |-  ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = (/) ) | 
						
							| 10 | 6 | imaeq1d |  |-  ( -. A e. _V -> ( [_ A / x ]_ B " _V ) = ( (/) " _V ) ) | 
						
							| 11 | 5 9 10 | 3eqtr4a |  |-  ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) ) | 
						
							| 12 | 3 11 | pm2.61i |  |-  ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) | 
						
							| 13 | 1 12 | eqtri |  |-  [_ A / x ]_ ( B " _V ) = ( [_ A / x ]_ B " _V ) | 
						
							| 14 |  | dfrn4 |  |-  ran B = ( B " _V ) | 
						
							| 15 | 14 | csbeq2i |  |-  [_ A / x ]_ ran B = [_ A / x ]_ ( B " _V ) | 
						
							| 16 |  | dfrn4 |  |-  ran [_ A / x ]_ B = ( [_ A / x ]_ B " _V ) | 
						
							| 17 | 13 15 16 | 3eqtr4i |  |-  [_ A / x ]_ ran B = ran [_ A / x ]_ B |