Step |
Hyp |
Ref |
Expression |
1 |
|
csbima12 |
|- [_ A / x ]_ ( B " _V ) = ( [_ A / x ]_ B " [_ A / x ]_ _V ) |
2 |
|
csbconstg |
|- ( A e. _V -> [_ A / x ]_ _V = _V ) |
3 |
2
|
imaeq2d |
|- ( A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) ) |
4 |
|
0ima |
|- ( (/) " _V ) = (/) |
5 |
4
|
eqcomi |
|- (/) = ( (/) " _V ) |
6 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
7 |
6
|
imaeq1d |
|- ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( (/) " [_ A / x ]_ _V ) ) |
8 |
|
0ima |
|- ( (/) " [_ A / x ]_ _V ) = (/) |
9 |
7 8
|
eqtrdi |
|- ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = (/) ) |
10 |
6
|
imaeq1d |
|- ( -. A e. _V -> ( [_ A / x ]_ B " _V ) = ( (/) " _V ) ) |
11 |
5 9 10
|
3eqtr4a |
|- ( -. A e. _V -> ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) ) |
12 |
3 11
|
pm2.61i |
|- ( [_ A / x ]_ B " [_ A / x ]_ _V ) = ( [_ A / x ]_ B " _V ) |
13 |
1 12
|
eqtri |
|- [_ A / x ]_ ( B " _V ) = ( [_ A / x ]_ B " _V ) |
14 |
|
dfrn4 |
|- ran B = ( B " _V ) |
15 |
14
|
csbeq2i |
|- [_ A / x ]_ ran B = [_ A / x ]_ ( B " _V ) |
16 |
|
dfrn4 |
|- ran [_ A / x ]_ B = ( [_ A / x ]_ B " _V ) |
17 |
13 15 16
|
3eqtr4i |
|- [_ A / x ]_ ran B = ran [_ A / x ]_ B |