Step |
Hyp |
Ref |
Expression |
1 |
|
csbab |
|- [_ A / x ]_ { y | y = B } = { y | [. A / x ]. y = B } |
2 |
|
sbceq2g |
|- ( A e. V -> ( [. A / x ]. y = B <-> y = [_ A / x ]_ B ) ) |
3 |
2
|
abbidv |
|- ( A e. V -> { y | [. A / x ]. y = B } = { y | y = [_ A / x ]_ B } ) |
4 |
1 3
|
eqtrid |
|- ( A e. V -> [_ A / x ]_ { y | y = B } = { y | y = [_ A / x ]_ B } ) |
5 |
|
df-sn |
|- { B } = { y | y = B } |
6 |
5
|
csbeq2i |
|- [_ A / x ]_ { B } = [_ A / x ]_ { y | y = B } |
7 |
|
df-sn |
|- { [_ A / x ]_ B } = { y | y = [_ A / x ]_ B } |
8 |
4 6 7
|
3eqtr4g |
|- ( A e. V -> [_ A / x ]_ { B } = { [_ A / x ]_ B } ) |