| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbab |
|- [_ A / x ]_ { y | y = B } = { y | [. A / x ]. y = B } |
| 2 |
|
sbceq2g |
|- ( A e. V -> ( [. A / x ]. y = B <-> y = [_ A / x ]_ B ) ) |
| 3 |
2
|
abbidv |
|- ( A e. V -> { y | [. A / x ]. y = B } = { y | y = [_ A / x ]_ B } ) |
| 4 |
1 3
|
eqtrid |
|- ( A e. V -> [_ A / x ]_ { y | y = B } = { y | y = [_ A / x ]_ B } ) |
| 5 |
|
df-sn |
|- { B } = { y | y = B } |
| 6 |
5
|
csbeq2i |
|- [_ A / x ]_ { B } = [_ A / x ]_ { y | y = B } |
| 7 |
|
df-sn |
|- { [_ A / x ]_ B } = { y | y = [_ A / x ]_ B } |
| 8 |
4 6 7
|
3eqtr4g |
|- ( A e. V -> [_ A / x ]_ { B } = { [_ A / x ]_ B } ) |