Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. V -> A e. _V ) |
2 |
|
df-csb |
|- [_ y / x ]_ x = { z | [. y / x ]. z e. x } |
3 |
|
sbcel2gv |
|- ( y e. _V -> ( [. y / x ]. z e. x <-> z e. y ) ) |
4 |
3
|
abbi1dv |
|- ( y e. _V -> { z | [. y / x ]. z e. x } = y ) |
5 |
2 4
|
eqtrid |
|- ( y e. _V -> [_ y / x ]_ x = y ) |
6 |
5
|
elv |
|- [_ y / x ]_ x = y |
7 |
6
|
csbeq2i |
|- [_ A / y ]_ [_ y / x ]_ x = [_ A / y ]_ y |
8 |
|
csbcow |
|- [_ A / y ]_ [_ y / x ]_ x = [_ A / x ]_ x |
9 |
|
df-csb |
|- [_ A / y ]_ y = { z | [. A / y ]. z e. y } |
10 |
7 8 9
|
3eqtr3i |
|- [_ A / x ]_ x = { z | [. A / y ]. z e. y } |
11 |
|
sbcel2gv |
|- ( A e. _V -> ( [. A / y ]. z e. y <-> z e. A ) ) |
12 |
11
|
abbi1dv |
|- ( A e. _V -> { z | [. A / y ]. z e. y } = A ) |
13 |
10 12
|
eqtrid |
|- ( A e. _V -> [_ A / x ]_ x = A ) |
14 |
1 13
|
syl |
|- ( A e. V -> [_ A / x ]_ x = A ) |