| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 2 |
|
df-csb |
|- [_ y / x ]_ x = { z | [. y / x ]. z e. x } |
| 3 |
|
sbcel2gv |
|- ( y e. _V -> ( [. y / x ]. z e. x <-> z e. y ) ) |
| 4 |
3
|
eqabcdv |
|- ( y e. _V -> { z | [. y / x ]. z e. x } = y ) |
| 5 |
2 4
|
eqtrid |
|- ( y e. _V -> [_ y / x ]_ x = y ) |
| 6 |
5
|
elv |
|- [_ y / x ]_ x = y |
| 7 |
6
|
csbeq2i |
|- [_ A / y ]_ [_ y / x ]_ x = [_ A / y ]_ y |
| 8 |
|
csbcow |
|- [_ A / y ]_ [_ y / x ]_ x = [_ A / x ]_ x |
| 9 |
|
df-csb |
|- [_ A / y ]_ y = { z | [. A / y ]. z e. y } |
| 10 |
7 8 9
|
3eqtr3i |
|- [_ A / x ]_ x = { z | [. A / y ]. z e. y } |
| 11 |
|
sbcel2gv |
|- ( A e. _V -> ( [. A / y ]. z e. y <-> z e. A ) ) |
| 12 |
11
|
eqabcdv |
|- ( A e. _V -> { z | [. A / y ]. z e. y } = A ) |
| 13 |
10 12
|
eqtrid |
|- ( A e. _V -> [_ A / x ]_ x = A ) |
| 14 |
1 13
|
syl |
|- ( A e. V -> [_ A / x ]_ x = A ) |