Metamath Proof Explorer


Theorem csbvargi

Description: The proper substitution of a class for a setvar variable results in the class (if the class exists), in inference form of csbvarg . (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypothesis csbvargi.1
|- A e. _V
Assertion csbvargi
|- [_ A / x ]_ x = A

Proof

Step Hyp Ref Expression
1 csbvargi.1
 |-  A e. _V
2 csbvarg
 |-  ( A e. _V -> [_ A / x ]_ x = A )
3 1 2 ax-mp
 |-  [_ A / x ]_ x = A