| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-word |  |-  Word x = { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } | 
						
							| 2 | 1 | csbeq2i |  |-  [_ S / x ]_ Word x = [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } | 
						
							| 3 |  | sbcrex |  |-  ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x ) | 
						
							| 4 |  | sbcfg |  |-  ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x ) ) | 
						
							| 5 |  | csbconstg |  |-  ( S e. V -> [_ S / x ]_ w = w ) | 
						
							| 6 |  | csbconstg |  |-  ( S e. V -> [_ S / x ]_ ( 0 ..^ l ) = ( 0 ..^ l ) ) | 
						
							| 7 |  | csbvarg |  |-  ( S e. V -> [_ S / x ]_ x = S ) | 
						
							| 8 | 5 6 7 | feq123d |  |-  ( S e. V -> ( [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x <-> w : ( 0 ..^ l ) --> S ) ) | 
						
							| 9 | 4 8 | bitrd |  |-  ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> w : ( 0 ..^ l ) --> S ) ) | 
						
							| 10 | 9 | rexbidv |  |-  ( S e. V -> ( E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) | 
						
							| 11 | 3 10 | bitrid |  |-  ( S e. V -> ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) | 
						
							| 12 | 11 | abbidv |  |-  ( S e. V -> { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) | 
						
							| 13 |  | csbab |  |-  [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } | 
						
							| 14 |  | df-word |  |-  Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } | 
						
							| 15 | 12 13 14 | 3eqtr4g |  |-  ( S e. V -> [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = Word S ) | 
						
							| 16 | 2 15 | eqtrid |  |-  ( S e. V -> [_ S / x ]_ Word x = Word S ) |