Step |
Hyp |
Ref |
Expression |
1 |
|
df-word |
|- Word x = { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } |
2 |
1
|
csbeq2i |
|- [_ S / x ]_ Word x = [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } |
3 |
|
sbcrex |
|- ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x ) |
4 |
|
sbcfg |
|- ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x ) ) |
5 |
|
csbconstg |
|- ( S e. V -> [_ S / x ]_ w = w ) |
6 |
|
csbconstg |
|- ( S e. V -> [_ S / x ]_ ( 0 ..^ l ) = ( 0 ..^ l ) ) |
7 |
|
csbvarg |
|- ( S e. V -> [_ S / x ]_ x = S ) |
8 |
5 6 7
|
feq123d |
|- ( S e. V -> ( [_ S / x ]_ w : [_ S / x ]_ ( 0 ..^ l ) --> [_ S / x ]_ x <-> w : ( 0 ..^ l ) --> S ) ) |
9 |
4 8
|
bitrd |
|- ( S e. V -> ( [. S / x ]. w : ( 0 ..^ l ) --> x <-> w : ( 0 ..^ l ) --> S ) ) |
10 |
9
|
rexbidv |
|- ( S e. V -> ( E. l e. NN0 [. S / x ]. w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
11 |
3 10
|
syl5bb |
|- ( S e. V -> ( [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x <-> E. l e. NN0 w : ( 0 ..^ l ) --> S ) ) |
12 |
11
|
abbidv |
|- ( S e. V -> { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } ) |
13 |
|
csbab |
|- [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = { w | [. S / x ]. E. l e. NN0 w : ( 0 ..^ l ) --> x } |
14 |
|
df-word |
|- Word S = { w | E. l e. NN0 w : ( 0 ..^ l ) --> S } |
15 |
12 13 14
|
3eqtr4g |
|- ( S e. V -> [_ S / x ]_ { w | E. l e. NN0 w : ( 0 ..^ l ) --> x } = Word S ) |
16 |
2 15
|
eqtrid |
|- ( S e. V -> [_ S / x ]_ Word x = Word S ) |