Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
|- ( x = y -> ( X \ x ) = ( X \ y ) ) |
2 |
1
|
breq1d |
|- ( x = y -> ( ( X \ x ) ~< X <-> ( X \ y ) ~< X ) ) |
3 |
2
|
elrab |
|- ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y e. ~P X /\ ( X \ y ) ~< X ) ) |
4 |
|
velpw |
|- ( y e. ~P X <-> y C_ X ) |
5 |
4
|
anbi1i |
|- ( ( y e. ~P X /\ ( X \ y ) ~< X ) <-> ( y C_ X /\ ( X \ y ) ~< X ) ) |
6 |
3 5
|
bitri |
|- ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y C_ X /\ ( X \ y ) ~< X ) ) |
7 |
6
|
a1i |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( y e. { x e. ~P X | ( X \ x ) ~< X } <-> ( y C_ X /\ ( X \ y ) ~< X ) ) ) |
8 |
|
simpl |
|- ( ( X e. dom card /\ _om ~<_ X ) -> X e. dom card ) |
9 |
|
difid |
|- ( X \ X ) = (/) |
10 |
|
infn0 |
|- ( _om ~<_ X -> X =/= (/) ) |
11 |
10
|
adantl |
|- ( ( X e. dom card /\ _om ~<_ X ) -> X =/= (/) ) |
12 |
|
0sdomg |
|- ( X e. dom card -> ( (/) ~< X <-> X =/= (/) ) ) |
13 |
12
|
adantr |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( (/) ~< X <-> X =/= (/) ) ) |
14 |
11 13
|
mpbird |
|- ( ( X e. dom card /\ _om ~<_ X ) -> (/) ~< X ) |
15 |
9 14
|
eqbrtrid |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( X \ X ) ~< X ) |
16 |
|
difeq2 |
|- ( y = X -> ( X \ y ) = ( X \ X ) ) |
17 |
16
|
breq1d |
|- ( y = X -> ( ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
18 |
17
|
sbcieg |
|- ( X e. dom card -> ( [. X / y ]. ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
19 |
18
|
adantr |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( [. X / y ]. ( X \ y ) ~< X <-> ( X \ X ) ~< X ) ) |
20 |
15 19
|
mpbird |
|- ( ( X e. dom card /\ _om ~<_ X ) -> [. X / y ]. ( X \ y ) ~< X ) |
21 |
|
sdomirr |
|- -. X ~< X |
22 |
|
0ex |
|- (/) e. _V |
23 |
|
difeq2 |
|- ( y = (/) -> ( X \ y ) = ( X \ (/) ) ) |
24 |
|
dif0 |
|- ( X \ (/) ) = X |
25 |
23 24
|
eqtrdi |
|- ( y = (/) -> ( X \ y ) = X ) |
26 |
25
|
breq1d |
|- ( y = (/) -> ( ( X \ y ) ~< X <-> X ~< X ) ) |
27 |
22 26
|
sbcie |
|- ( [. (/) / y ]. ( X \ y ) ~< X <-> X ~< X ) |
28 |
27
|
a1i |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( [. (/) / y ]. ( X \ y ) ~< X <-> X ~< X ) ) |
29 |
21 28
|
mtbiri |
|- ( ( X e. dom card /\ _om ~<_ X ) -> -. [. (/) / y ]. ( X \ y ) ~< X ) |
30 |
|
simp1l |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> X e. dom card ) |
31 |
30
|
difexd |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ w ) e. _V ) |
32 |
|
sscon |
|- ( w C_ z -> ( X \ z ) C_ ( X \ w ) ) |
33 |
32
|
3ad2ant3 |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ z ) C_ ( X \ w ) ) |
34 |
|
ssdomg |
|- ( ( X \ w ) e. _V -> ( ( X \ z ) C_ ( X \ w ) -> ( X \ z ) ~<_ ( X \ w ) ) ) |
35 |
31 33 34
|
sylc |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( X \ z ) ~<_ ( X \ w ) ) |
36 |
|
domsdomtr |
|- ( ( ( X \ z ) ~<_ ( X \ w ) /\ ( X \ w ) ~< X ) -> ( X \ z ) ~< X ) |
37 |
36
|
ex |
|- ( ( X \ z ) ~<_ ( X \ w ) -> ( ( X \ w ) ~< X -> ( X \ z ) ~< X ) ) |
38 |
35 37
|
syl |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( ( X \ w ) ~< X -> ( X \ z ) ~< X ) ) |
39 |
|
vex |
|- w e. _V |
40 |
|
difeq2 |
|- ( y = w -> ( X \ y ) = ( X \ w ) ) |
41 |
40
|
breq1d |
|- ( y = w -> ( ( X \ y ) ~< X <-> ( X \ w ) ~< X ) ) |
42 |
39 41
|
sbcie |
|- ( [. w / y ]. ( X \ y ) ~< X <-> ( X \ w ) ~< X ) |
43 |
|
vex |
|- z e. _V |
44 |
|
difeq2 |
|- ( y = z -> ( X \ y ) = ( X \ z ) ) |
45 |
44
|
breq1d |
|- ( y = z -> ( ( X \ y ) ~< X <-> ( X \ z ) ~< X ) ) |
46 |
43 45
|
sbcie |
|- ( [. z / y ]. ( X \ y ) ~< X <-> ( X \ z ) ~< X ) |
47 |
38 42 46
|
3imtr4g |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ z ) -> ( [. w / y ]. ( X \ y ) ~< X -> [. z / y ]. ( X \ y ) ~< X ) ) |
48 |
|
infunsdom |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) ) -> ( ( X \ z ) u. ( X \ w ) ) ~< X ) |
49 |
48
|
ex |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( ( X \ z ) u. ( X \ w ) ) ~< X ) ) |
50 |
|
difindi |
|- ( X \ ( z i^i w ) ) = ( ( X \ z ) u. ( X \ w ) ) |
51 |
50
|
breq1i |
|- ( ( X \ ( z i^i w ) ) ~< X <-> ( ( X \ z ) u. ( X \ w ) ) ~< X ) |
52 |
49 51
|
syl6ibr |
|- ( ( X e. dom card /\ _om ~<_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( X \ ( z i^i w ) ) ~< X ) ) |
53 |
52
|
3ad2ant1 |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ X ) -> ( ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) -> ( X \ ( z i^i w ) ) ~< X ) ) |
54 |
46 42
|
anbi12i |
|- ( ( [. z / y ]. ( X \ y ) ~< X /\ [. w / y ]. ( X \ y ) ~< X ) <-> ( ( X \ z ) ~< X /\ ( X \ w ) ~< X ) ) |
55 |
43
|
inex1 |
|- ( z i^i w ) e. _V |
56 |
|
difeq2 |
|- ( y = ( z i^i w ) -> ( X \ y ) = ( X \ ( z i^i w ) ) ) |
57 |
56
|
breq1d |
|- ( y = ( z i^i w ) -> ( ( X \ y ) ~< X <-> ( X \ ( z i^i w ) ) ~< X ) ) |
58 |
55 57
|
sbcie |
|- ( [. ( z i^i w ) / y ]. ( X \ y ) ~< X <-> ( X \ ( z i^i w ) ) ~< X ) |
59 |
53 54 58
|
3imtr4g |
|- ( ( ( X e. dom card /\ _om ~<_ X ) /\ z C_ X /\ w C_ X ) -> ( ( [. z / y ]. ( X \ y ) ~< X /\ [. w / y ]. ( X \ y ) ~< X ) -> [. ( z i^i w ) / y ]. ( X \ y ) ~< X ) ) |
60 |
7 8 20 29 47 59
|
isfild |
|- ( ( X e. dom card /\ _om ~<_ X ) -> { x e. ~P X | ( X \ x ) ~< X } e. ( Fil ` X ) ) |