| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> F Fn A ) | 
						
							| 3 |  | cshwfn |  |-  ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 4 | 3 | 3adant3 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 5 |  | cshwrn |  |-  ( ( W e. Word A /\ N e. ZZ ) -> ran ( W cyclShift N ) C_ A ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ran ( W cyclShift N ) C_ A ) | 
						
							| 7 |  | fnco |  |-  ( ( F Fn A /\ ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ ran ( W cyclShift N ) C_ A ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 8 | 2 4 6 7 | syl3anc |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 9 |  | wrdco |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. Word B ) | 
						
							| 10 | 9 | 3adant2 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. W ) e. Word B ) | 
						
							| 11 |  | simp2 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> N e. ZZ ) | 
						
							| 12 |  | cshwfn |  |-  ( ( ( F o. W ) e. Word B /\ N e. ZZ ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) | 
						
							| 13 | 10 11 12 | syl2anc |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) | 
						
							| 14 |  | lenco |  |-  ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) | 
						
							| 15 | 14 | 3adant2 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` ( F o. W ) ) ) = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 17 | 16 | fneq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) <-> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 18 | 13 17 | mpbid |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 19 | 15 | adantr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) | 
						
							| 22 | 21 | fveq2d |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) | 
						
							| 23 |  | wrdfn |  |-  ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 24 | 23 | 3ad2ant1 |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 26 |  | elfzoelz |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) | 
						
							| 27 |  | zaddcl |  |-  ( ( i e. ZZ /\ N e. ZZ ) -> ( i + N ) e. ZZ ) | 
						
							| 28 | 26 11 27 | syl2anr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( i + N ) e. ZZ ) | 
						
							| 29 |  | elfzo0 |  |-  ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) | 
						
							| 30 | 29 | simp2bi |  |-  ( i e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) | 
						
							| 32 |  | zmodfzo |  |-  ( ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 33 | 28 31 32 | syl2anc |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 34 | 15 | oveq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) | 
						
							| 35 | 34 | eleq1d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 37 | 33 36 | mpbird |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 38 |  | fvco2 |  |-  ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) | 
						
							| 39 | 25 37 38 | syl2anc |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) | 
						
							| 40 |  | simpl1 |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) | 
						
							| 41 | 11 | adantr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) | 
						
							| 42 |  | simpr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 43 |  | cshwidxmod |  |-  ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` i ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) | 
						
							| 45 | 40 41 42 44 | syl3anc |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) | 
						
							| 46 | 22 39 45 | 3eqtr4rd |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) | 
						
							| 47 |  | fvco2 |  |-  ( ( ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) | 
						
							| 48 | 4 47 | sylan |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) | 
						
							| 49 | 10 | adantr |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F o. W ) e. Word B ) | 
						
							| 50 | 15 | eqcomd |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` W ) = ( # ` ( F o. W ) ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ ( # ` ( F o. W ) ) ) ) | 
						
							| 52 | 51 | eleq2d |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) ) | 
						
							| 53 | 52 | biimpa |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) | 
						
							| 54 |  | cshwidxmod |  |-  ( ( ( F o. W ) e. Word B /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) | 
						
							| 55 | 49 41 53 54 | syl3anc |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) | 
						
							| 56 | 46 48 55 | 3eqtr4d |  |-  ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( ( ( F o. W ) cyclShift N ) ` i ) ) | 
						
							| 57 | 8 18 56 | eqfnfvd |  |-  ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) = ( ( F o. W ) cyclShift N ) ) |