Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
2 |
1
|
3ad2ant3 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> F Fn A ) |
3 |
|
cshwfn |
|- ( ( W e. Word A /\ N e. ZZ ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
4 |
3
|
3adant3 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
5 |
|
cshwrn |
|- ( ( W e. Word A /\ N e. ZZ ) -> ran ( W cyclShift N ) C_ A ) |
6 |
5
|
3adant3 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ran ( W cyclShift N ) C_ A ) |
7 |
|
fnco |
|- ( ( F Fn A /\ ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ ran ( W cyclShift N ) C_ A ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) |
8 |
2 4 6 7
|
syl3anc |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) Fn ( 0 ..^ ( # ` W ) ) ) |
9 |
|
wrdco |
|- ( ( W e. Word A /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
10 |
9
|
3adant2 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. W ) e. Word B ) |
11 |
|
simp2 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> N e. ZZ ) |
12 |
|
cshwfn |
|- ( ( ( F o. W ) e. Word B /\ N e. ZZ ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
13 |
10 11 12
|
syl2anc |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
14 |
|
lenco |
|- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
15 |
14
|
3adant2 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
16 |
15
|
oveq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` ( F o. W ) ) ) = ( 0 ..^ ( # ` W ) ) ) |
17 |
16
|
fneq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` ( F o. W ) ) ) <-> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) ) |
18 |
13 17
|
mpbid |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( F o. W ) cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) ) |
19 |
15
|
adantr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
20 |
19
|
oveq2d |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
21 |
20
|
fveq2d |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) |
22 |
21
|
fveq2d |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
23 |
|
wrdfn |
|- ( W e. Word A -> W Fn ( 0 ..^ ( # ` W ) ) ) |
24 |
23
|
3ad2ant1 |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
25 |
24
|
adantr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
26 |
|
elfzoelz |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> i e. ZZ ) |
27 |
|
zaddcl |
|- ( ( i e. ZZ /\ N e. ZZ ) -> ( i + N ) e. ZZ ) |
28 |
26 11 27
|
syl2anr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( i + N ) e. ZZ ) |
29 |
|
elfzo0 |
|- ( i e. ( 0 ..^ ( # ` W ) ) <-> ( i e. NN0 /\ ( # ` W ) e. NN /\ i < ( # ` W ) ) ) |
30 |
29
|
simp2bi |
|- ( i e. ( 0 ..^ ( # ` W ) ) -> ( # ` W ) e. NN ) |
31 |
30
|
adantl |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( # ` W ) e. NN ) |
32 |
|
zmodfzo |
|- ( ( ( i + N ) e. ZZ /\ ( # ` W ) e. NN ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
33 |
28 31 32
|
syl2anc |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) |
34 |
15
|
oveq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) = ( ( i + N ) mod ( # ` W ) ) ) |
35 |
34
|
eleq1d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
36 |
35
|
adantr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) <-> ( ( i + N ) mod ( # ` W ) ) e. ( 0 ..^ ( # ` W ) ) ) ) |
37 |
33 36
|
mpbird |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) |
38 |
|
fvco2 |
|- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ ( ( i + N ) mod ( # ` ( F o. W ) ) ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) |
39 |
25 37 38
|
syl2anc |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) ) |
40 |
|
simpl1 |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> W e. Word A ) |
41 |
11
|
adantr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> N e. ZZ ) |
42 |
|
simpr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) |
43 |
|
cshwidxmod |
|- ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W cyclShift N ) ` i ) = ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) |
44 |
43
|
fveq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
45 |
40 41 42 44
|
syl3anc |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( F ` ( W ` ( ( i + N ) mod ( # ` W ) ) ) ) ) |
46 |
22 39 45
|
3eqtr4rd |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F ` ( ( W cyclShift N ) ` i ) ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
47 |
|
fvco2 |
|- ( ( ( W cyclShift N ) Fn ( 0 ..^ ( # ` W ) ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) |
48 |
4 47
|
sylan |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( F ` ( ( W cyclShift N ) ` i ) ) ) |
49 |
10
|
adantr |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( F o. W ) e. Word B ) |
50 |
15
|
eqcomd |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( # ` W ) = ( # ` ( F o. W ) ) ) |
51 |
50
|
oveq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
52 |
51
|
eleq2d |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( i e. ( 0 ..^ ( # ` W ) ) <-> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) ) |
53 |
52
|
biimpa |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) |
54 |
|
cshwidxmod |
|- ( ( ( F o. W ) e. Word B /\ N e. ZZ /\ i e. ( 0 ..^ ( # ` ( F o. W ) ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
55 |
49 41 53 54
|
syl3anc |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( F o. W ) cyclShift N ) ` i ) = ( ( F o. W ) ` ( ( i + N ) mod ( # ` ( F o. W ) ) ) ) ) |
56 |
46 48 55
|
3eqtr4d |
|- ( ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. ( W cyclShift N ) ) ` i ) = ( ( ( F o. W ) cyclShift N ) ` i ) ) |
57 |
8 18 56
|
eqfnfvd |
|- ( ( W e. Word A /\ N e. ZZ /\ F : A --> B ) -> ( F o. ( W cyclShift N ) ) = ( ( F o. W ) cyclShift N ) ) |