| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq1 |  |-  ( w = W -> ( w = (/) <-> W = (/) ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( w = W /\ n = N ) -> ( w = (/) <-> W = (/) ) ) | 
						
							| 3 |  | simpl |  |-  ( ( w = W /\ n = N ) -> w = W ) | 
						
							| 4 |  | simpr |  |-  ( ( w = W /\ n = N ) -> n = N ) | 
						
							| 5 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( w = W /\ n = N ) -> ( # ` w ) = ( # ` W ) ) | 
						
							| 7 | 4 6 | oveq12d |  |-  ( ( w = W /\ n = N ) -> ( n mod ( # ` w ) ) = ( N mod ( # ` W ) ) ) | 
						
							| 8 | 7 6 | opeq12d |  |-  ( ( w = W /\ n = N ) -> <. ( n mod ( # ` w ) ) , ( # ` w ) >. = <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) | 
						
							| 9 | 3 8 | oveq12d |  |-  ( ( w = W /\ n = N ) -> ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) = ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ) | 
						
							| 10 | 3 7 | oveq12d |  |-  ( ( w = W /\ n = N ) -> ( w prefix ( n mod ( # ` w ) ) ) = ( W prefix ( N mod ( # ` W ) ) ) ) | 
						
							| 11 | 9 10 | oveq12d |  |-  ( ( w = W /\ n = N ) -> ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) = ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) | 
						
							| 12 | 2 11 | ifbieq2d |  |-  ( ( w = W /\ n = N ) -> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) = if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) | 
						
							| 13 |  | df-csh |  |-  cyclShift = ( w e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } , n e. ZZ |-> if ( w = (/) , (/) , ( ( w substr <. ( n mod ( # ` w ) ) , ( # ` w ) >. ) ++ ( w prefix ( n mod ( # ` w ) ) ) ) ) ) | 
						
							| 14 |  | 0ex |  |-  (/) e. _V | 
						
							| 15 |  | ovex |  |-  ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) e. _V | 
						
							| 16 | 14 15 | ifex |  |-  if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) e. _V | 
						
							| 17 | 12 13 16 | ovmpoa |  |-  ( ( W e. { f | E. l e. NN0 f Fn ( 0 ..^ l ) } /\ N e. ZZ ) -> ( W cyclShift N ) = if ( W = (/) , (/) , ( ( W substr <. ( N mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( N mod ( # ` W ) ) ) ) ) ) |