| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshimadifsn |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift J ) " ( 1 ..^ N ) ) ) |
| 2 |
|
elfzoel2 |
|- ( J e. ( 0 ..^ N ) -> N e. ZZ ) |
| 3 |
|
elfzom1elp1fzo1 |
|- ( ( N e. ZZ /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
| 4 |
3
|
ex |
|- ( N e. ZZ -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 5 |
2 4
|
syl |
|- ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 6 |
5
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) ) |
| 7 |
6
|
imp |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
| 8 |
|
elfzo1elm1fzo0 |
|- ( x e. ( 1 ..^ N ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 9 |
8
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> ( x - 1 ) e. ( 0 ..^ ( N - 1 ) ) ) |
| 10 |
|
oveq1 |
|- ( y = ( x - 1 ) -> ( y + 1 ) = ( ( x - 1 ) + 1 ) ) |
| 11 |
10
|
eqeq2d |
|- ( y = ( x - 1 ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) |
| 12 |
11
|
adantl |
|- ( ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) /\ y = ( x - 1 ) ) -> ( x = ( y + 1 ) <-> x = ( ( x - 1 ) + 1 ) ) ) |
| 13 |
|
elfzoelz |
|- ( x e. ( 1 ..^ N ) -> x e. ZZ ) |
| 14 |
13
|
zcnd |
|- ( x e. ( 1 ..^ N ) -> x e. CC ) |
| 15 |
|
npcan1 |
|- ( x e. CC -> ( ( x - 1 ) + 1 ) = x ) |
| 16 |
14 15
|
syl |
|- ( x e. ( 1 ..^ N ) -> ( ( x - 1 ) + 1 ) = x ) |
| 17 |
16
|
eqcomd |
|- ( x e. ( 1 ..^ N ) -> x = ( ( x - 1 ) + 1 ) ) |
| 18 |
17
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> x = ( ( x - 1 ) + 1 ) ) |
| 19 |
9 12 18
|
rspcedvd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ x e. ( 1 ..^ N ) ) -> E. y e. ( 0 ..^ ( N - 1 ) ) x = ( y + 1 ) ) |
| 20 |
|
fveq2 |
|- ( x = ( y + 1 ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) |
| 21 |
20
|
3ad2ant3 |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift J ) ` ( y + 1 ) ) ) |
| 22 |
|
elfzoelz |
|- ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. CC ) |
| 24 |
23
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. CC ) |
| 25 |
|
elfzoelz |
|- ( J e. ( 0 ..^ N ) -> J e. ZZ ) |
| 26 |
25
|
zcnd |
|- ( J e. ( 0 ..^ N ) -> J e. CC ) |
| 27 |
26
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. CC ) |
| 28 |
27
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. CC ) |
| 29 |
|
1cnd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> 1 e. CC ) |
| 30 |
|
add32r |
|- ( ( y e. CC /\ J e. CC /\ 1 e. CC ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) |
| 31 |
24 28 29 30
|
syl3anc |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + ( J + 1 ) ) = ( ( y + 1 ) + J ) ) |
| 32 |
31
|
fvoveq1d |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
| 33 |
|
simpl1 |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> F e. Word S ) |
| 34 |
25
|
peano2zd |
|- ( J e. ( 0 ..^ N ) -> ( J + 1 ) e. ZZ ) |
| 35 |
34
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( J + 1 ) e. ZZ ) |
| 36 |
35
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( J + 1 ) e. ZZ ) |
| 37 |
|
fzossrbm1 |
|- ( N e. ZZ -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 38 |
2 37
|
syl |
|- ( J e. ( 0 ..^ N ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 39 |
38
|
sseld |
|- ( J e. ( 0 ..^ N ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) |
| 40 |
39
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ ( N - 1 ) ) -> y e. ( 0 ..^ N ) ) ) |
| 41 |
40
|
imp |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ N ) ) |
| 42 |
|
oveq2 |
|- ( N = ( # ` F ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) |
| 43 |
42
|
eleq2d |
|- ( N = ( # ` F ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 44 |
43
|
3ad2ant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 45 |
44
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y e. ( 0 ..^ N ) <-> y e. ( 0 ..^ ( # ` F ) ) ) ) |
| 46 |
41 45
|
mpbid |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> y e. ( 0 ..^ ( # ` F ) ) ) |
| 47 |
|
cshwidxmod |
|- ( ( F e. Word S /\ ( J + 1 ) e. ZZ /\ y e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) |
| 48 |
33 36 46 47
|
syl3anc |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) ` y ) = ( F ` ( ( y + ( J + 1 ) ) mod ( # ` F ) ) ) ) |
| 49 |
25
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> J e. ZZ ) |
| 50 |
49
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> J e. ZZ ) |
| 51 |
|
fzo0ss1 |
|- ( 1 ..^ N ) C_ ( 0 ..^ N ) |
| 52 |
2
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> N e. ZZ ) |
| 53 |
52 3
|
sylan |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 1 ..^ N ) ) |
| 54 |
51 53
|
sselid |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ N ) ) |
| 55 |
42
|
eleq2d |
|- ( N = ( # ` F ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 56 |
55
|
3ad2ant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 57 |
56
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( y + 1 ) e. ( 0 ..^ N ) <-> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) ) |
| 58 |
54 57
|
mpbid |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) |
| 59 |
|
cshwidxmod |
|- ( ( F e. Word S /\ J e. ZZ /\ ( y + 1 ) e. ( 0 ..^ ( # ` F ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
| 60 |
33 50 58 59
|
syl3anc |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( F ` ( ( ( y + 1 ) + J ) mod ( # ` F ) ) ) ) |
| 61 |
32 48 60
|
3eqtr4rd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 62 |
61
|
3adant3 |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` ( y + 1 ) ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 63 |
21 62
|
eqtrd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( F cyclShift J ) ` x ) = ( ( F cyclShift ( J + 1 ) ) ` y ) ) |
| 64 |
63
|
eqeq1d |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ y e. ( 0 ..^ ( N - 1 ) ) /\ x = ( y + 1 ) ) -> ( ( ( F cyclShift J ) ` x ) = z <-> ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) |
| 65 |
7 19 64
|
rexxfrd2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z <-> E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z ) ) |
| 66 |
65
|
abbidv |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
| 67 |
25
|
anim2i |
|- ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 68 |
67
|
3adant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ J e. ZZ ) ) |
| 69 |
|
cshwfn |
|- ( ( F e. Word S /\ J e. ZZ ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 70 |
68 69
|
syl |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 71 |
|
fnfun |
|- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift J ) ) |
| 72 |
71
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift J ) ) |
| 73 |
42
|
3ad2ant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` F ) ) ) |
| 74 |
51 73
|
sseqtrid |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 75 |
74
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 76 |
|
fndm |
|- ( ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
| 77 |
76
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift J ) = ( 0 ..^ ( # ` F ) ) ) |
| 78 |
75 77
|
sseqtrrd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) |
| 79 |
72 78
|
jca |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift J ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 80 |
70 79
|
mpdan |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) ) |
| 81 |
|
dfimafn |
|- ( ( Fun ( F cyclShift J ) /\ ( 1 ..^ N ) C_ dom ( F cyclShift J ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) |
| 82 |
80 81
|
syl |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = { z | E. x e. ( 1 ..^ N ) ( ( F cyclShift J ) ` x ) = z } ) |
| 83 |
34
|
anim2i |
|- ( ( F e. Word S /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) |
| 84 |
83
|
3adant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F e. Word S /\ ( J + 1 ) e. ZZ ) ) |
| 85 |
|
cshwfn |
|- ( ( F e. Word S /\ ( J + 1 ) e. ZZ ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 86 |
84 85
|
syl |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) |
| 87 |
|
fnfun |
|- ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) |
| 88 |
87
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> Fun ( F cyclShift ( J + 1 ) ) ) |
| 89 |
38
|
3ad2ant3 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 90 |
|
oveq2 |
|- ( ( # ` F ) = N -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
| 91 |
90
|
eqcoms |
|- ( N = ( # ` F ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
| 92 |
91
|
3ad2ant2 |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ N ) ) |
| 93 |
89 92
|
sseqtrrd |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 94 |
93
|
adantr |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ ( # ` F ) ) ) |
| 95 |
|
fndm |
|- ( ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 96 |
95
|
adantl |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> dom ( F cyclShift ( J + 1 ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 97 |
94 96
|
sseqtrrd |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) |
| 98 |
88 97
|
jca |
|- ( ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) /\ ( F cyclShift ( J + 1 ) ) Fn ( 0 ..^ ( # ` F ) ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) |
| 99 |
86 98
|
mpdan |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) ) |
| 100 |
|
dfimafn |
|- ( ( Fun ( F cyclShift ( J + 1 ) ) /\ ( 0 ..^ ( N - 1 ) ) C_ dom ( F cyclShift ( J + 1 ) ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
| 101 |
99 100
|
syl |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) = { z | E. y e. ( 0 ..^ ( N - 1 ) ) ( ( F cyclShift ( J + 1 ) ) ` y ) = z } ) |
| 102 |
66 82 101
|
3eqtr4d |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( ( F cyclShift J ) " ( 1 ..^ N ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |
| 103 |
1 102
|
eqtrd |
|- ( ( F e. Word S /\ N = ( # ` F ) /\ J e. ( 0 ..^ N ) ) -> ( F " ( ( 0 ..^ N ) \ { J } ) ) = ( ( F cyclShift ( J + 1 ) ) " ( 0 ..^ ( N - 1 ) ) ) ) |