Step |
Hyp |
Ref |
Expression |
1 |
|
wrdf |
|- ( F e. Word A -> F : ( 0 ..^ ( # ` F ) ) --> A ) |
2 |
|
df-f1 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) ) |
3 |
2
|
biimpri |
|- ( ( F : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
4 |
1 3
|
sylan |
|- ( ( F e. Word A /\ Fun `' F ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
5 |
4
|
3adant3 |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
6 |
5
|
adantr |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> F : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
7 |
|
simpl3 |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> S e. ZZ ) |
8 |
|
simpr |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G = ( F cyclShift S ) ) |
9 |
|
cshf1 |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> A /\ S e. ZZ /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) /\ G = ( F cyclShift S ) ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) |
11 |
10
|
ex |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> G : ( 0 ..^ ( # ` F ) ) -1-1-> A ) ) |
12 |
|
df-f1 |
|- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A <-> ( G : ( 0 ..^ ( # ` F ) ) --> A /\ Fun `' G ) ) |
13 |
12
|
simprbi |
|- ( G : ( 0 ..^ ( # ` F ) ) -1-1-> A -> Fun `' G ) |
14 |
11 13
|
syl6 |
|- ( ( F e. Word A /\ Fun `' F /\ S e. ZZ ) -> ( G = ( F cyclShift S ) -> Fun `' G ) ) |