| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 |  |-  ( (/) cyclShift 0 ) = (/) | 
						
							| 2 |  | oveq1 |  |-  ( (/) = W -> ( (/) cyclShift 0 ) = ( W cyclShift 0 ) ) | 
						
							| 3 |  | id |  |-  ( (/) = W -> (/) = W ) | 
						
							| 4 | 1 2 3 | 3eqtr3a |  |-  ( (/) = W -> ( W cyclShift 0 ) = W ) | 
						
							| 5 | 4 | a1d |  |-  ( (/) = W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) | 
						
							| 6 |  | 0z |  |-  0 e. ZZ | 
						
							| 7 |  | cshword |  |-  ( ( W e. Word V /\ 0 e. ZZ ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( W e. Word V -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) | 
						
							| 10 |  | necom |  |-  ( (/) =/= W <-> W =/= (/) ) | 
						
							| 11 |  | lennncl |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) | 
						
							| 12 |  | nnrp |  |-  ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) | 
						
							| 13 |  | 0mod |  |-  ( ( # ` W ) e. RR+ -> ( 0 mod ( # ` W ) ) = 0 ) | 
						
							| 14 | 13 | opeq1d |  |-  ( ( # ` W ) e. RR+ -> <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. = <. 0 , ( # ` W ) >. ) | 
						
							| 15 | 14 | oveq2d |  |-  ( ( # ` W ) e. RR+ -> ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. 0 , ( # ` W ) >. ) ) | 
						
							| 16 | 13 | oveq2d |  |-  ( ( # ` W ) e. RR+ -> ( W prefix ( 0 mod ( # ` W ) ) ) = ( W prefix 0 ) ) | 
						
							| 17 | 15 16 | oveq12d |  |-  ( ( # ` W ) e. RR+ -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) | 
						
							| 18 | 11 12 17 | 3syl |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) | 
						
							| 19 | 10 18 | sylan2b |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) | 
						
							| 20 | 9 19 | eqtrd |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) | 
						
							| 21 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 22 |  | pfxval |  |-  ( ( W e. Word V /\ ( # ` W ) e. NN0 ) -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) | 
						
							| 23 | 21 22 | mpdan |  |-  ( W e. Word V -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) | 
						
							| 24 |  | pfxid |  |-  ( W e. Word V -> ( W prefix ( # ` W ) ) = W ) | 
						
							| 25 | 23 24 | eqtr3d |  |-  ( W e. Word V -> ( W substr <. 0 , ( # ` W ) >. ) = W ) | 
						
							| 26 | 25 | adantr |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W substr <. 0 , ( # ` W ) >. ) = W ) | 
						
							| 27 |  | pfx00 |  |-  ( W prefix 0 ) = (/) | 
						
							| 28 | 27 | a1i |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W prefix 0 ) = (/) ) | 
						
							| 29 | 26 28 | oveq12d |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) = ( W ++ (/) ) ) | 
						
							| 30 |  | ccatrid |  |-  ( W e. Word V -> ( W ++ (/) ) = W ) | 
						
							| 31 | 30 | adantr |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W ++ (/) ) = W ) | 
						
							| 32 | 20 29 31 | 3eqtrd |  |-  ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = W ) | 
						
							| 33 | 32 | expcom |  |-  ( (/) =/= W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) | 
						
							| 34 | 5 33 | pm2.61ine |  |-  ( W e. Word V -> ( W cyclShift 0 ) = W ) |