Step |
Hyp |
Ref |
Expression |
1 |
|
0csh0 |
|- ( (/) cyclShift 0 ) = (/) |
2 |
|
oveq1 |
|- ( (/) = W -> ( (/) cyclShift 0 ) = ( W cyclShift 0 ) ) |
3 |
|
id |
|- ( (/) = W -> (/) = W ) |
4 |
1 2 3
|
3eqtr3a |
|- ( (/) = W -> ( W cyclShift 0 ) = W ) |
5 |
4
|
a1d |
|- ( (/) = W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
cshword |
|- ( ( W e. Word V /\ 0 e. ZZ ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
8 |
6 7
|
mpan2 |
|- ( W e. Word V -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
9 |
8
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
10 |
|
necom |
|- ( (/) =/= W <-> W =/= (/) ) |
11 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
12 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
13 |
|
0mod |
|- ( ( # ` W ) e. RR+ -> ( 0 mod ( # ` W ) ) = 0 ) |
14 |
13
|
opeq1d |
|- ( ( # ` W ) e. RR+ -> <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. = <. 0 , ( # ` W ) >. ) |
15 |
14
|
oveq2d |
|- ( ( # ` W ) e. RR+ -> ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
16 |
13
|
oveq2d |
|- ( ( # ` W ) e. RR+ -> ( W prefix ( 0 mod ( # ` W ) ) ) = ( W prefix 0 ) ) |
17 |
15 16
|
oveq12d |
|- ( ( # ` W ) e. RR+ -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
18 |
11 12 17
|
3syl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
19 |
10 18
|
sylan2b |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
20 |
9 19
|
eqtrd |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
21 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
22 |
|
pfxval |
|- ( ( W e. Word V /\ ( # ` W ) e. NN0 ) -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
23 |
21 22
|
mpdan |
|- ( W e. Word V -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
24 |
|
pfxid |
|- ( W e. Word V -> ( W prefix ( # ` W ) ) = W ) |
25 |
23 24
|
eqtr3d |
|- ( W e. Word V -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
26 |
25
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
27 |
|
pfx00 |
|- ( W prefix 0 ) = (/) |
28 |
27
|
a1i |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W prefix 0 ) = (/) ) |
29 |
26 28
|
oveq12d |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) = ( W ++ (/) ) ) |
30 |
|
ccatrid |
|- ( W e. Word V -> ( W ++ (/) ) = W ) |
31 |
30
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W ++ (/) ) = W ) |
32 |
20 29 31
|
3eqtrd |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = W ) |
33 |
32
|
expcom |
|- ( (/) =/= W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
34 |
5 33
|
pm2.61ine |
|- ( W e. Word V -> ( W cyclShift 0 ) = W ) |