| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0csh0 |
|- ( (/) cyclShift 0 ) = (/) |
| 2 |
|
oveq1 |
|- ( (/) = W -> ( (/) cyclShift 0 ) = ( W cyclShift 0 ) ) |
| 3 |
|
id |
|- ( (/) = W -> (/) = W ) |
| 4 |
1 2 3
|
3eqtr3a |
|- ( (/) = W -> ( W cyclShift 0 ) = W ) |
| 5 |
4
|
a1d |
|- ( (/) = W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
| 6 |
|
0z |
|- 0 e. ZZ |
| 7 |
|
cshword |
|- ( ( W e. Word V /\ 0 e. ZZ ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
| 8 |
6 7
|
mpan2 |
|- ( W e. Word V -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
| 9 |
8
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) ) |
| 10 |
|
necom |
|- ( (/) =/= W <-> W =/= (/) ) |
| 11 |
|
lennncl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
| 12 |
|
nnrp |
|- ( ( # ` W ) e. NN -> ( # ` W ) e. RR+ ) |
| 13 |
|
0mod |
|- ( ( # ` W ) e. RR+ -> ( 0 mod ( # ` W ) ) = 0 ) |
| 14 |
13
|
opeq1d |
|- ( ( # ` W ) e. RR+ -> <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. = <. 0 , ( # ` W ) >. ) |
| 15 |
14
|
oveq2d |
|- ( ( # ` W ) e. RR+ -> ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
| 16 |
13
|
oveq2d |
|- ( ( # ` W ) e. RR+ -> ( W prefix ( 0 mod ( # ` W ) ) ) = ( W prefix 0 ) ) |
| 17 |
15 16
|
oveq12d |
|- ( ( # ` W ) e. RR+ -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 18 |
11 12 17
|
3syl |
|- ( ( W e. Word V /\ W =/= (/) ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 19 |
10 18
|
sylan2b |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. ( 0 mod ( # ` W ) ) , ( # ` W ) >. ) ++ ( W prefix ( 0 mod ( # ` W ) ) ) ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 20 |
9 19
|
eqtrd |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) ) |
| 21 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
| 22 |
|
pfxval |
|- ( ( W e. Word V /\ ( # ` W ) e. NN0 ) -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
| 23 |
21 22
|
mpdan |
|- ( W e. Word V -> ( W prefix ( # ` W ) ) = ( W substr <. 0 , ( # ` W ) >. ) ) |
| 24 |
|
pfxid |
|- ( W e. Word V -> ( W prefix ( # ` W ) ) = W ) |
| 25 |
23 24
|
eqtr3d |
|- ( W e. Word V -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
| 26 |
25
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W substr <. 0 , ( # ` W ) >. ) = W ) |
| 27 |
|
pfx00 |
|- ( W prefix 0 ) = (/) |
| 28 |
27
|
a1i |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W prefix 0 ) = (/) ) |
| 29 |
26 28
|
oveq12d |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( ( W substr <. 0 , ( # ` W ) >. ) ++ ( W prefix 0 ) ) = ( W ++ (/) ) ) |
| 30 |
|
ccatrid |
|- ( W e. Word V -> ( W ++ (/) ) = W ) |
| 31 |
30
|
adantr |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W ++ (/) ) = W ) |
| 32 |
20 29 31
|
3eqtrd |
|- ( ( W e. Word V /\ (/) =/= W ) -> ( W cyclShift 0 ) = W ) |
| 33 |
32
|
expcom |
|- ( (/) =/= W -> ( W e. Word V -> ( W cyclShift 0 ) = W ) ) |
| 34 |
5 33
|
pm2.61ine |
|- ( W e. Word V -> ( W cyclShift 0 ) = W ) |